Laboratory CIM & Robotik Prof. Dipl.-Ing. Georg Stark

Model-based and Component-oriented Programming of Robot Controls

- 1. Development Process of Industrial Control Units
- 2. Programming Paradigms
 - object-oriented
 - component-oriented
 - model-based
- 3. Example Development of Robot Control *MRobot*
 - Synchronous Execution and Simulation
 - Sensor Integration

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Development Process – Industrial Control Units

Objectives

- Improved Maintainability of Software
- Cost Efficiency
- Optimal Information Flow between Involved Personell
- High Functionality of Software

Approach: Improved Software Technology

Combination of

model-based, component-oriented, object-oriented Programming Methods

<u></u>

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Development Process - Phases

- 1. Planning
 - Requirement Specification

2. Analysis

- Knowledge Aquisition,
- Formal Representation

3. Design

- Architecture
- Substructures
- Test Procedure
- 4. Implementation and Test
- 5. Verification

<u>.</u>Ţ.Ţ.Ţ.

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Development Process – Analysis and Design

Representation of Information by Using Design Diagram

Object-Oriented Programming

Key Ideas

- Conception of Classes, Inheritance, Encapsulation
- Classes are Templates for Software Objects
- Facilitate the Creation of Variants
- Software Interfaces, Abstract Classes
- Classes Represent Pieces of Knowledge
- Non-domain-specific Programming Language
- Only Support the Representation of Structure of Knowledge, not the Knowledge itself

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Component-Oriented Programming

Key Ideas

- Software components are pieces of executable software, to be used via standardized interfaces
- Applying components, a framework-plugin architecture can be realized
- The framework supplies the time-critical functionality. The robot-related knowledge will be implemented by using plugins
- Benefits:
 - Components can be implemented by applying different programming languages
 - The maintenance of software will be improved
- Examples of standardized component interfaces:
 - COM, defined by Microsoft,
 - CORBA, OMG (www.omg.org),
 - JavaBeans.

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Model-Based Programming

Key Ideas

- Programs implement knowledge, related to different domains, e.g. operating dialogues, shape of workpieces, kinematical behavior of machines
- Formal Models represent knowledge by applying formal languages
- A model is defined to be a sufficiently precise, coherent representation of a specific area of the real world
- Domain-specific programming languages are necessary, to directly and efficiently implement formal models
- The technical software MATLAB also comprises a programming language, supporting the direct implementation of formal models

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Comparison of Programming Paradigms

Object-Oriented Programming

Design: Representation of <u>Structure of Knowledge</u> by Classes, Safety, Reusability of Software Implementation: General Purpose Language

Component-Oriented Programming

Design: Definition of <u>Executable Structures</u> Implementation: Exchangeability (Plugins), Various Languages to Be Used

Model-Based Programming

Analysis: Representation of Knowledge by <u>Formal Models</u> Design: Models Define Software Structure Implementation: Domain-Specific Language

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Example – Robot Control *MRobot*

Functions:

- 1 12 Motion Axis
- Interpolation Modes:
 - Point to Point
 - Linear, including Polynom-Bypassing
 - Circular
 - Spline
- Sensor Control
- Offline-Programming with
 Realtime Graphical Simulation
- Powerful Application-Specific Programming Language (MATLAB Script)

ŢŢŢ

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Example – Robot Control *MRobot*

User-Benefits:

- MATLAB-Interface:
 - Robot-Systemsoftware
 - Application Software
- Easy Programming:
 - applicable by Robot Experts, not having intensive Programming Skills
- Decreased Costs for Development and Maintenance

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Model-based Design – Motion Control

Software Structure – Components, Interfaces

Control Panel:

Teach Koordinaten		
Verschiebung in mm:	20	Drehung in Grad: 5
X-Achse +	0.3360	X-Achse 🕂 🕘
Y-Achse 🛨 💶	0.0350	Y-Achse 🕂 🕘
Z-Achse + -	0.1730	Z-Achse + +
Toolkoordinaten	– Sensor Options – – – – – – – – – – – – – – – – – – –	Sensordimension
	🔵 Abstandssensor	💽 X-Achse
	 3D-Kamera Sensor aus 	V-Achse
	Sollabstand	Kollisionserkennung
·Ľ·Ľ		
partment of Prof. Ge	eorg Stark	Hochschule Augsburg

Computer Science

Automation – Robotics

University of Applied Sciences

Synchronous Execution and Simulation

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Simulation of KUKA Robot KR15

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Motion Control by Distance Sensor

.Ţ.Ĉ.Ţ.

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Costeffective Collision Detection by 3D-Webcam

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Object Tracing by 3D-Webcam

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Hochschule Augsburg University of Applied Sciences

Controlling Lightweight Robot of Schunk Company

Department of Computer Science **Prof. Georg Stark** Automation – Robotics

Laboratory CIM & Robotik

Internet Presentation

Book: Robotik mit MATLAB:

http://www.hs-augsburg.de/stark/robotik_mit_matlab/

MATLAB User Story:

http://www.mathworks.de/company/user_stories/userstory20581.html

Laboratory CIM & Robotik:

http://www.hs-augsburg.de/campus/rotes_tor/j-bau/j3/j307/index.html

Department of Computer Science **Prof. Georg Stark** Automation – Robotics