· **J**· **J**· **J**· **J**· **Hochschule Augsburg** University of Applied Sciences

Cryogenic Hydrogen Cooling System for a New Electric Drive System

Prof. Dr.-Ing. André Baeten

06.12.2023

Biography – André Baeten

Affiliation:

Professor of Lightweight Construction, Composite Technology and Technical Mechanics at Augsburg University of Applied Sciences, Germany

Responsibilities:

- Head of the study and research field "composite technology" and "aerospace engineering"
- Head of the test lab "composite materials"
- Point of contact for the Carbon Composites association activities
- Supervisor of PhD candidates
- Research professor in composites technology and fluid structure interaction

Prof. A. Baeten

Prof. Dr.-Ing. André Baeten

Board of Directors Member of the

International Society of Offshore and Polar Engineers (ISOPE)

The 1st (2022) ISOPE Clean Fuel Symposium

Focus: LNG tank design and sloshing analysis

Hochschule Augsburg University of Applied Sciences

- ISOPE member since 2009
- 15 ISOPE Papers & Presentations
- ISOPE Technical Program Committee (TPC) Member
- ISOPE Sloshing Technical Committee (TC) Chair
- ISOPE Clean Fuel Symposium Organizer

Clean Fuel	Clean Fuel	Clean Fuel	Clean Fuel	Clean Fuel	Clean Fuel
Production	Storage	Transportation	Standards and	Infrastructure	Sustainability
-wind energy	-tank design	-ship/pipeline	Safety	-smart grids	
- solar energy	-permeability	-land transport	Regulations	- local production /	
- biological	- gas / liquid	-gas/liquid		central provider	
processes					

Prof. A. Baeten

Agenda

06.12.2023

Agenda

- 1. Emission-Free Drive Concepts in Aviation
- 2. Introducing H2-Cooled Axial Flow Motor
- 3. Presentation of the Funding Project K-AXFLUX-H2
- 4. Concept and Technical Realization
- 5. MBSE-Methodology
- 6. Cooling with Hydrogen
- 7. Material Characterization
- 8. Simulation and Testing
- 9. Manufacturing
- 10. Summary and Outlook

Emission-free drive concepts in aviation

Hydrogen Direct Combustion Fuel Cell Drive Trains Synthetic Fuels Battery electric interesting for larger Future, emission-free and aircraft CO2-Footprint scalable drive system Scaling e.g.: Airbus ZeroE Price Technology easy to control Low gravimetric energy density/weight of batteries University and Technical University of Applied Sciences Augsburg: Projekt K-AXFLUX-H2 [Flug Revue]

06.12.2023

Prof. A. Baeten

n Cryogenic Hydrogen Cooling System for a New Electric Drive System

Hochschule Augsburg

University of Applied Sciences

Introducing H2-cooled axial flow motor

Overarching motivation: Sustainable flying using a fuel cell-powered axial flow engine

- > Why fuel cell drive?
 - Emission-free
 - High energy density of LH2
- > Why axial flux motor?
 - Very high electrical efficiency (approx. 97%)
 - Very high overloads possible
 - Motor design ideal for internal cooling

[Magnax Motoren]

> Why hydrogen cooling?

06.12.2023

- High heat absorption capacity and large T difference; LH2: 20[K] / -253° [C]
- Direct cooling in the windings using hollow conductors

Hochschule Augsburg

Jniversity of Applied Sciences

Hochschule Augsburg University of Applied Sciences

Aim:

Integration of a H2-cooled axial flow motor in a regional distance aircraft

Dornier 228 - research plane of the German Aerospace Center (DLR)

- \rightarrow Definition of a characteristic flight cycle
- \rightarrow Definition of the necessary power output
- → Requirement of limited assembly space in the aircraft
- \rightarrow Target efficiency (electrical) of 97%

Hochschule Augsburg

Project K-AXFLUX-H2

Funded by the Holistic Air Mobility Initiative (HAMI), BayLu25

 GH2 (+80°C)	
 LH2 (-253°C)	
 Electric (800V)	

Instead of using expensive and heavy heat exchange systems, our concept uses the heat of the E-motor to bring the cryogenic hydrogen up to the operating temperatur for the fuel cell.

> Hochschule Augsburg University of Applied Scie

Universität Augsburg

University

Gefördert durch:

Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie

06.12.2023

Prof. A. Baeten

Cryogenic Hydrogen Cooling System for a New Electric Drive System

9

4. Concept and Technical Realization

Hochschule Augsburg University of Applied Sciences

5. MBSE-Methodology

06.12.2023

5. MBSE-Methodology

Hochschule Augsburg University of Applied Sciences

Model-Based Systems Engineering (MBSE) Approach for the design and verification of the drive train including the cooling system

Prof. A. Baeten

6. Cooling with Hydrogen

Hydrogen heat transfer Depends on

Hochschule Augsburg University of Applied Sciences

- Phase transition
- Boil-off Rate

.<u>Ţ</u>.<u>Ţ</u>.Ţ

- Turbulence
- Compressibility
 effects

6 Cooling with Hydrogen

Hochschule Augsburg University of Applied Sciences

Ideal temperature scope for hydrogen in a cooling system is between 150 K and 250 K

06.12.2023

Prof. A. Baeten

Prof. A. Baeten

7. Material Characterization

Rotor / Stator:

- Lightweight rotor, high stiffness
- Excellent magnetic properties
- Lowest possible thermal expansion
- > Heat transfer in minimal installation space

06.12.2023

Prof. A. Baeten Cryogenic Hydrogen Cooling System for a New Electric Drive System

Electrical and thermal insulation of the hollow conductors:

- Sealing function against hydrogen
- ➤ High electrical currents
- Multi-pole design with a very high

packing density

7. Material Characterization

Immersion cooling

Hochschule Augsburg

University of Applied Sciences

- Moving crosshead **Bellow flange** Cover connection Load frame Push/pull rod Load cage Support rings Sample holder Sample Thermal isolating base **Base plate** Stationary crosshead
- Proven and easy method
- Immersion of the entire specimen
- Subsequently clamping and testing

Drawback

- Limited to the boiling temperature of hydrogen
- Rapid reheating of the sample
- No exact values at specified temperatures

Improvement

- Cooling the sample directly in the test device
- Cooling in an insulated chamber

06.12.2023

Prof. A. Baeten

7. Material Characterization

- Inner copper shielding
- Outer copper shielding
- 1. Stage thermal bridge

2. Stage thermal bridge **GM-Cryocooler**

Cryocooler

- Closed cooling circuit
- Gifford-McMahon cooler
- Determination of characteristic values ٠ at defined temperatures

Drawback

Increased costs

06.12.2023

Prof. A. Baeten

No overlapping of the eigen frequencies

Boundary Conditions:

- Housing-tabs as fixed support
- Shaft as cylindrical support with rotational freedom

Mass flow m, fluid flow velocity v and waste heat Q at Input & Output constant => Main parameter Changing heat transfer into the hydrogen AC+DC heating H_2 Output parameters: X H2 T₂ at the exit X H2 p₂ at the exit

Prof. A. Baeten Cr

Prof. A. Baeten

Heat flux calculation

- Wall surface of the ring conductor: $S = d_{tube} * \pi * l_{tube}$
- Assumption: All of the unseable energy is converted to heat

$$\dot{Q} = P_{Motor} * (1 - \eta_{Motor}) \Rightarrow \Phi_q = \frac{Q}{S}$$

Motor data for calculation				
P _{motor}	200 [kW]			
٩motor	95 [%]			
d _{tube}	3.2 [mm]			
L _{tube}	1106 [mm]			

Fluid flow data				
4 [bar]				
30 [K]				
0.0005				

Al-supported virtual and real testing

Al-based control loop for the H2 cooling system

AI-based Operational Testing

Flugleistungschrakteristik DA42 NG, (PA app. 5000+ft, OAT 14 deg C)

Aim:

Integration of the H2-cooled E-motor in theDLR flying test bed Do 228

Way ahead:

Evaluation of measurement flights with the DA 42NG aircraft and training of MBL-algorithms, extrapolation to Do 228

Hochschule Augsburg

University of Applied Sciences

Additive manufacturing

- grants more design freedom
- manufacturing of challenging geometries
- optimal usage of the limited installation space

Component	Stator	Housing, Insulators	Rotor
Challenge	Challenging geometry	Lightweight	Stiffness, Lightweight
Technology	Metal 3D-printing (EBM, SLS, DMLS)	Polymer 3D-printing (FDM)	CFRP Additive Manufacturing (FPP)

Prof. A. Baeten

10. Summary and Outlook

Equipment in the new MRM research building

Prof. A. Baeten

10. Summary and Outlook

Equipment in the new MRM research building

Tape production machine (C-fibers, bio-based fibers) Cross layer: 2D – 3D tape layer dry fibers / prepregs

06.12.2023

Prof. A. Baeten

Faculty of Mechanical Engineering – Research group HSA_comp

Level: Bachelor Degree, Master Degree, Thesis or Group Project

Concept Study of a Cryogenic Hydrogen Cooled Axial Flux Engine for Aerospace Applications

In this project a concept study for a lightweight cryogenic hydrogen cooled axial flux motor is developed. The concept is based on a hybrid material design to fulfill the electromagnetic, thermal, chemical, and mechanical requirements for a high-performance electrical drive train for Urban Air Mobility (UAM) applications. The concept study focuses on the virtual pre-design of the rotor stator combination and the cooling system using composites and ferromagnetic materials. FE and electro-magnetic performance simulation results based on trade studies will be performed. Additionally, a Design of Experiment (DoE) will be derived for the thermal and chemical material characterization of the cooling system operated with cryogenic hydrogen.

10. Summary and Outlook

34

Scope of the internship is to get familiar with high-technology simulation and testing tools used to design a complex electrical motor cooled with cryogenic hydrogen. The internship covers:

- Support of the Design of Experiment for H2-cooled axial flux engines
- Support of the development of an AI-based thermodynamical control loop of the cooling system
- Hydrogen safety assessment

Prof. A. Baeten

- CFD / FE simulations and electromagnetic simulations of an axial flux engine:

Cryogenic Hydrogen Cooling System for a New Electric Drive System

- Model-Based Systems Engineering (MBSE): Set up of model functions for the hydrogen cooling
- system

06:12.2023

Summary

- As an energy source, hydrogen is an essential part of the solution for the mobility of the future
- Significant reduction of thermal losses in the drive train by utilizing the heat capacity of cryogenic hydrogen
- Result: Lightweight, compact, highly efficient and scalable powertrain
- As part of the K-AXFLUX-H2 funding project, design methodologies are being developed that help to significantly reduce the very high costs for the design and production of hydrogen-based drive technologies (MBSE)

Outlook

• Functional demonstrator with integrated H2 cooling system in the 300 kW power range, available in 2024 and ready for testing in aircraft

Prof. Dr.-Ing. André Baeten

Research Professor Lightweight Construction and Composite Technology

HSA_comp/ Composite Design & Engineering Department of Mechanical and Process Engineering

Technical University of Applied Sciences Augsburg MRM (Room 2038) Am Technologiezentrum 8 86159 Augsburg T +49 821 5586-3176 andre.baeten@hs-augsburg.de www.hs-augsburg.de