Systemnahe Programmierung in Rust
- “The Book" / Fortgeschrittene Sprachmerkmale / Kap. 20 -

Hubert Hogl

Technische Hochschule Augsburg / Informatik
https://tha.de/~hhoegl|

2025-12-18 13:07:14

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 1/36

]
Unsafe Rust

Unsafe Rust (20.1)

ubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 2/36

Unsafe Rust

@ Bisher nur “safe Rust”: Compiler ist konservativ, er lehnt auch manche Programme ab, die sicher wéren.

@ Nun “unsafe Rust”:

o Die Programmiererln ibernimmt selber die Verantwortung. Mit Sorgfalt priifen, dass keine Speicherfehler
entstehen (z.B. Nullpointer Dereferenzierung).

e Hardwarenahe Programmierung geht nur im unsicheren Modus. Beispiele sind mit einem Betriebssystem iiber
Systemaufrufe zu kommunizieren oder selbst ein Betriebssystem zu schreiben.

@ Unsafe Block:

unsafe {

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 3/36

|
Unsafe Rust (2)

Im Unsafe Block ist erlaubt:
o Dereferenzieren eines Rohzeigers

Aufrufen einer unsicheren Funktion oder Methode

@ Zugreifen auf oder Andern einer veranderlichen statischen Variablen
o Implementieren eines unsicheren Merkmals (trait)
@ Zugreifen auf Felder in union

Ziele:

@ Isolieren des unsicheren Code Blocks und Bereitstellen einer sicheren API.

@ Unsafe Blocke klein halten.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 4/36

Unsafe Rust (3) - Dereferenzieren eines Rohzeigers

o Bisher waren in Rust Referenzen immer giiltig.
@ In Unsafe Rust gibt es nun rohe Zeiger (raw pointer):

*const T
*mut T

Der Stern ist Teil des Typnamens (keine Dereferenzierung)

@ Rohzeiger sind anders als Referenzen und intelligente Zeiger:

o Sie diirfen die Ausleihregeln ignorieren, indem sie sowohl unveranderliche als auch veranderliche Zeiger oder
mehrere veranderliche Zeiger auf die gleiche Stelle haben.

e Sie zeigen nicht garantiert auf giiltigen Speicher.

o Sie diirfen null sein.

o Sie implementieren keine automatische Bereinigung.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 5/36

Unsafe Rust (4) - Dereferenzieren eines Rohzeigers (2)

Rohzeiger kdnnen im sicheren Code erzeugt, aber nicht dereferenziert werden!

let mut num = 5; // r1 und r2 zeigen auf num

let rl = &num as *const i32; // micht aenderbar
let r2 = &mut num as *mut i32; // aenderbar
unsafe {

println!("r1 ist: {}", *rl);
println! ("r2 ist: {}", *r2);
¥

Zeiger auf eine absolute Speicheradresse:

let address = 0x012345usize;
let r = address as *const i32;

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14

6/36

Unsafe Rust (5) - Aufrufen einer unsicheren Funktion oder Methode

unsafe fn dangerous() { ... } // Funktionsrumpf ist unsafe Block
unsafe {
dangerous() ;
}
Sichere Abstraktion von unsicherem Code
Beispiel:
fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) { ... }

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 7/36

|
Unsafe Rust (6)

use std::slice;

fn split_at_mut(values: &mut [i132], mid: usize) -> (&mut [i132], &mut [i32]) {
let len = values.len();
let ptr = values.as_mut_ptr();

assert!(mid <= len);

unsafe {

(

slice::from_raw_parts_mut(ptr, mid),
slice::from_raw_parts_mut (ptr.add(mid), len - mid),

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 8/36

|
Unsafe Rust (7)

Geht nicht:

use std::slice;

let address = 0x01234usize;
let r = address as *mut i32;

let values: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) };

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 9/36

|
Unsafe Rust (8)

Verwenden von extern-Funktionen um externen Code aufzurufen

extern "C" { // C ABI
fn abs(input: i32) -> i32;

}
fn main() {
unsafe {
println! ("Absolutwert von -3 gemif C: {}",
abs(-3));
}

}
Nun Rust aus C aufrufen (kein unsafe nétig):

#[no_mangle]
pub extern "C" fn call_from_c() {
println! ("Rust-Funktion von C aufgerufen!");

}

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14

10/36

Unsafe Rust (9) - Zugreifen oder Andern einer veranderlichen, statischen Variable

Statische Variable sind globale Variable
In sicherem Code nur lesbar
Haben feste Adresse im Speicher (im Unterschied zu Konstanten, diese diirfen dupliziert werden)

Lesen und Schreiben bei static mut muss in unsafe Block sein, da in einem anderen Thread ein schreibender
Zugriff erfolgen konnte (siehe Kap. 16).

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
unsafe { COUNTER += inc; }
}

fn main() {
add_to_count(3);
unsafe { println!("COUNTER: {}", COUNTER); }

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 11/36

Unsafe Rust (6) - Implementieren eines unsicheren Merkmals

Ein Trait ist unsafe, wenn mindestens eine Methode unsafe ist.

unsafe trait Foo {
// Methoden kommen hierhin

unsafe impl Foo for i32 {
// Methoden-Implementierungen kommen hierhin

}

fn main() {}

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 12 /36

Unsafe Rust (7) - Zugreifen auf Felder einer Vereinigung (union)

Unions sind 3hnlich wie struct, jedoch teilen sich alle Felder den gleichen Speicher. Unions werden haufig in C
Code verwendet.

#[repr(C)]
union MyUnion {
f1: u32,
f2: £32,

let u = MyUnion { f1: 1 };
let f = unsafe { u.f1 };

Quelle: https://doc.rust-lang.org/reference/items/unions.html

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 13/36

https://doc.rust-lang.org/reference/items/unions.html

Traits

Traits (20.2)

ubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 14 /36

Traits

Siehe auch die Abschnitte 10.2 (Merkmale), 17.2 (Merkmalsobjekte)
Merkmal mit assoziiertem Typ
pub trait Iterator {

type Item;

fn next(&mut self) -> Option<Self::Item>;
impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> { ... }

@ Beachte Unterschied generischer Datentyp <+ assoziierter Typ

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14

15/36

Standardparameter fiir generische Typen und Operatoriiberladung

Trait definiert in std: :ops: :Add:
trait Add<Rhs=Self> {
type Output;
fn add(self, rhs: Rhs) -> Self::Output;
}
Standardtypparameter (default type parameter): Rhs=Self
Beispiel fiir Standardtyp:

struct Point {
x: i32,
y: 132,

// siehe maechste Seite

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 16 /36

|
Standardparameter fiir generische Typen und Operatoriiberladung (2)

// siehe vorherige Seite

impl Add for Point {
type Output = Point;

fn add(self, other: Point) -> Point {
Point {
x: self.x + other.x,
y: self.y + other.y,

}

Beachte: Hinter impl Add muss man nichts in spitzen Klammern angeben. Der “Normalfall” ist, dass zwei
gleiche Typen addiert werden.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 17 /36

|
Standardparameter fiir generische Typen und Operatoriiberladung (3)

Nun Rhs nicht der Standardtyp:
use std::ops::Add;

struct Millimeters(u32);
struct Meters(u32);

impl Add<Meters> for Millimeters {
type Output = Millimeters;

fn add(self, other: Meters) -> Millimeters {
Millimeters(self.0 + (other.0 * 1000))
}
¥

Beachte: impl Add<Meters>, Meters ist nun der vom Standard abweichende Typ.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14

18/36

|
Standardparameter fiir generische Typen und Operatoriiberladung (4)

Standardtypparameter werden verwendet

@ um einen Typ zu erweitern, ohne bestehenden Code zu brechen.

@ um eine Anpassung in bestimmten Fallen zu erméglichen, die die meisten Benutzer nicht benétigen (wie bei
impl Add<Meters>).

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 19/36

|
Eindeutige Syntax bei Methodenaufrufen

trait Animal {
fn baby_name() -> String;

struct Dog;

impl Dog {
fn baby_name() -> String { String::from("Spot") }
}

impl Animal for Dog {
fn baby_name() -> String { String::from("Welpe") }
}

<Dog as Animal>::baby_name(); // Animal::baby_name() kompiliert nicht!
Voll qualifizierte Syntax

<Type as Trait>::function(receiver_if_method, next_arg, ...);

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 20/36

Supermerkmale

OutlinePrint erfordert das Merkmal Display:

trait OutlinePrint: fmt::Display {
fn outline_print (&self) {

}
o Unterschied zur Merkmalsabgrenzung (trait bound), siehe Kap. 10.2
@ Gegenbeispiel: impl OutlinePrint for Point {} wiirde nicht gehen, solange Display nicht fiir Point

implementiert ist.

Systemnahe Programmierung in Rust 2025-12-18 13:07:14 21/36

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /|

Das Newtype-Muster

o Waisenregel: Merkmal kann nur dann auf einem Typ implementiert werden, wenn entweder das Merkmal
oder der Typ lokal im Crate vorkommen.

@ Umgehen der Waisenregel durch Newtype-Muster: Externe Merkmale auf externen Typen damit moglich.
o Beispiel:
struct Wrapper(Vec<String>);
impl fmt::Display for Wrapper {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write! (£, "[{}]", self.0.join(", "))
}

o Falls der dussere Typ Wrapper alle Methoden des inneren Typs Vec haben soll, muss der Deref Trait
implementiert werden, so dass der innere Typ zuriickgegeben wird.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 22/36

|
Fortgeschrittene Typen

Fortgeschrittene Typen (20.3)

Hubert Hégl (Technische Hochschule Augsbur, Informatik https:/| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 23/36

Fortgeschrittene Typen

Das Newtype Muster
(siehe auch 20.2)

o damit Werte nicht verwechselt werden kdnnen

@ Angabe von Einheiten (Bsp.: Millimeter, Meter)

@ Implementierungsdetails eines Typs abstrahieren, d.h. der neue Typ kann ein anderes API als der private
innere Typ haben

e Kapselung, um Implementierungsdetails zu verbergen (siehe 17.1)

Typ-Synonyme mit Typ-Alias

type Kilometers = i32; //
type Result<T> = std::result::Result<T, std::io::Error>; // in std Llib

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 24 /36

|
Fortgeschrittene Typen (2)

Bessere Lesbarkeit

type Thunk = Box<dyn Fn() + Send + 'static>;
let f: Thunk = Box::new(|| println!("hallo"));
fn takes_long_type(f: Thunk) { ... }

fn returns_long_type() -> Thunk { ... }

Der “Niemals” Typ

! ist ein sogenannter “leerer Typ", weil er keine Werte hat. Die folgende Funktion kehrt niemals zuriick, deshalb
wird der ! Operator auch never type genannt:

fn bar() > ! { ... }
continue gibt ! zuriick, deshalb kompiliert der folgende Code:

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue, // ! kann in jeden anderen Typ umgewandelt werden

};

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 25/36

|
Fortgeschrittene Typen (3)

Fortsetzung: Never Type
panic! gibt ! zuriick, deswegen kann der Riickgabewert von unwrap() T sein:

impl<T> Option<T> {
pub fn unwrap(self) -> T {
match self {
Some(val) => val,
None => panic! ("Aufruf von ~Option::unwrap() auf einem ~None -Wert"),

}
}
Typ des folgenden Ausdrucks ist !

loop {
print!("endlos");

}

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 26/36

|
Fortgeschrittene Typen (4)

Dynamisch groBe Typen und das Merkmal Sized
DST (dynamically sized types, oder unsized types): Grésse erst zur Laufzeit bekannt.
Beispiel:

e str ist DST
@ &str ist kein DST, siehe string slice, Kap. 4)

DST muss immer hinter Zeiger liegen: &str, Box<str>, Rc<str> (genauer: Zeiger + Lange),
Geht nicht:

let s1: str = "Guten Tag!";
let s2: str = "Wie geht es dir?";

Trait Objects sind auch DSTs (Kap. 17.2): &dyn Trait, Box<dyn Trait>, Rc<dyn Trait>

Mit Merkmal Sized werden alle Typen automatisch versehen, die eine feste Grésse haben. Die folgende linke
generische Funktion wird also wie rechts zu sehen behandelt. T kann also nur eine feste Grésse haben:

fn generic<T>(t: T) { ... } =======> fn generic<T: Sized>(t: T) { ... }

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 27 /36

|
Fortgeschrittene Typen (5)

Lockerung mit ?Sized: “T kann Sized sein oder nicht” (geht nur bei Sized)

fn generic<T: ?Sized>(t: &T) { ... }

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 28/36

Erweiterte Funktionen und Funktionsabschlisse (20.4)

Erweiterte Funktionen und Funktionsabschliisse (Closures)

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 29 /36

Erweiterte Funktionen und Funktionsabschlisse (1)

Funktionszeiger
Funktionen haben den Typ fn (Funktionszeiger, function pointer)

fn add_one(x: i32) -> i32 {
x + 1

}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
f(arg) + f(arg)
}

fn main() {
let answer = do_twice(add_one, 5);

println! ("Die Antwort ist: {}", answer);

}

Fn, FnMut, FnOnce sind Traits, fn ist ein Typ. Deswegen kann fn direkt in Funktionssignatur verwendet werden,
Traits nur iiber Merkmalsabgrenzungen.

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 30/36

Erweiterte Funktionen und Funktionsabschlisse (2)

fn implementiert Fn, FnMut, FnOnce. Deswegen kann man eine Funktion an der Stelle einsetzen, an der eine
Closure erwartet wird.
Beispiel:

let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> =
list_of_numbers.iter() .map(|i| i.to_string()).collect(); // Closure

Funktion to_string() im Trait ToString mit voll qualifiziertem Namen aufrufen:

let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> =
list_of_numbers.iter() .map(ToString: :to_string).collect();

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 31/36

Erweiterte Funktionen und Funktionsabschlisse (3)

Enums: Jede Variante hat auch eine Initialisierungsfunktion (Erinnerung Kap. 6.1, Konstruktorfunktion,
IpAddr::V4()).

enum Status {
Value (u32),
Stop,

let list_of_statuses: Vec<Status> = (0u32..20) .map(Status::Value).collect();

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 32/36

Erweiterte Funktionen und Funktionsabschlisse (4)

Zuriickgeben von Funktionsabschliissen

Traits sind DSTs, deshalb kann man sie nicht direkt aus Funktionen zuriick geben.
Funktionszeiger kdnnen auch nicht aus Funktionen zuriick gegeben werden.
Losung: Trait Object

fn returns_closure() -> Box<dyn Fn(i32) -> i32> {
Box::new(|x| x + 1)

}

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 33/36

|
Makros (20.5)

@ Deklarative Makros mit macro_rules!
Beispiel: vec!
@ Prozedurale Makros

o Benutzerdefinierte Makros mit #[derive]

o Attribut-dhnliche Makros, die benutzerdefinierte Attribute definieren, die bei jedem Element verwendet werden
konnen

o Funktions-dhnliche Makros, die wie Funktionsaufrufe aussehen, aber auf den als Argument angegebenen Token
operieren

@ Der Unterschied zwischen Makros und Funktionen

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 34 /36

|
Makros (2)

Deklarative Makros
@ “Makros am Beispiel” oder macro_rules! Makro

@ Vereinfachte Variante von vec! selber schreiben, so dass es wie folgt verwendet werden kann: let v:
Vec<u32> = vec![1, 2, 3];

#[macro_export]
macro_rules! vec {

($C $x:expr),*) => {

{
let mut temp_vec = Vec::new();
$(

temp_vec.push($x);

) *
temp_vec

}

+;
}
Lit.: The Little Book of Rust Macros https://veykril.github.io/tIborm/

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 35/36

https://veykril.github.io/tlborm/

|
Makros (3)

Prozedurale Makros zur Code-Generierung aus Attributen
XXX to do

Wie man ein benutzerdefiniertes Makro mit derive schreibt
XXX to do

Attribut-ghnliche Makros

XXX to do

Funktions-ahnliche Makros

XXX to do

Hubert Hégl (Technische Hochschule Augsburg / Informatik https: /| Systemnahe Programmierung in Rust 2025-12-18 13:07:14 36 /36

