
Systemnahe Programmierung in Rust
- “The Book” / Fortgeschrittene Sprachmerkmale / Kap. 20 -

Hubert Högl

Technische Hochschule Augsburg / Informatik
https://tha.de/~hhoegl

2025-12-18 13:07:14

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 1 / 36

Unsafe Rust

Unsafe Rust (20.1)

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 2 / 36

Unsafe Rust

Bisher nur “safe Rust”: Compiler ist konservativ, er lehnt auch manche Programme ab, die sicher wären.
Nun “unsafe Rust”:

Die ProgrammiererIn übernimmt selber die Verantwortung. Mit Sorgfalt prüfen, dass keine Speicherfehler
entstehen (z.B. Nullpointer Dereferenzierung).
Hardwarenahe Programmierung geht nur im unsicheren Modus. Beispiele sind mit einem Betriebssystem über
Systemaufrufe zu kommunizieren oder selbst ein Betriebssystem zu schreiben.

Unsafe Block:
unsafe {

...
}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 3 / 36

Unsafe Rust (2)

Im Unsafe Block ist erlaubt:
Dereferenzieren eines Rohzeigers
Aufrufen einer unsicheren Funktion oder Methode
Zugreifen auf oder Ändern einer veränderlichen statischen Variablen
Implementieren eines unsicheren Merkmals (trait)
Zugreifen auf Felder in union

Ziele:
Isolieren des unsicheren Code Blocks und Bereitstellen einer sicheren API.
Unsafe Blöcke klein halten.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 4 / 36

Unsafe Rust (3) - Dereferenzieren eines Rohzeigers

Bisher waren in Rust Referenzen immer gültig.
In Unsafe Rust gibt es nun rohe Zeiger (raw pointer):
*const T
*mut T

Der Stern ist Teil des Typnamens (keine Dereferenzierung)
Rohzeiger sind anders als Referenzen und intelligente Zeiger:

Sie dürfen die Ausleihregeln ignorieren, indem sie sowohl unveränderliche als auch veränderliche Zeiger oder
mehrere veränderliche Zeiger auf die gleiche Stelle haben.
Sie zeigen nicht garantiert auf gültigen Speicher.
Sie dürfen null sein.
Sie implementieren keine automatische Bereinigung.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 5 / 36

Unsafe Rust (4) - Dereferenzieren eines Rohzeigers (2)

Rohzeiger können im sicheren Code erzeugt, aber nicht dereferenziert werden!
let mut num = 5; // r1 und r2 zeigen auf num

let r1 = &num as *const i32; // nicht aenderbar
let r2 = &mut num as *mut i32; // aenderbar

unsafe {
println!("r1 ist: {}", *r1);
println!("r2 ist: {}", *r2);

}

Zeiger auf eine absolute Speicheradresse:
let address = 0x012345usize;
let r = address as *const i32;

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 6 / 36

Unsafe Rust (5) - Aufrufen einer unsicheren Funktion oder Methode

unsafe fn dangerous() { ... } // Funktionsrumpf ist unsafe Block

unsafe {
dangerous();

}

Sichere Abstraktion von unsicherem Code

Beispiel:
fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) { ... }

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 7 / 36

Unsafe Rust (6)

use std::slice;

fn split_at_mut(values: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) {
let len = values.len();
let ptr = values.as_mut_ptr();

assert!(mid <= len);

unsafe {
(

slice::from_raw_parts_mut(ptr, mid),
slice::from_raw_parts_mut(ptr.add(mid), len - mid),

)
}

}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 8 / 36

Unsafe Rust (7)

Geht nicht:
use std::slice;

let address = 0x01234usize;
let r = address as *mut i32;

let values: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) };

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 9 / 36

Unsafe Rust (8)

Verwenden von extern-Funktionen um externen Code aufzurufen

extern "C" { // C ABI
fn abs(input: i32) -> i32;

}

fn main() {
unsafe {

println!("Absolutwert von -3 gemäß C: {}",
abs(-3));

}
}

Nun Rust aus C aufrufen (kein unsafe nötig):
#[no_mangle]
pub extern "C" fn call_from_c() {

println!("Rust-Funktion von C aufgerufen!");
}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 10 / 36

Unsafe Rust (9) - Zugreifen oder Ändern einer veränderlichen, statischen Variable

Statische Variable sind globale Variable
In sicherem Code nur lesbar
Haben feste Adresse im Speicher (im Unterschied zu Konstanten, diese dürfen dupliziert werden)
Lesen und Schreiben bei static mut muss in unsafe Block sein, da in einem anderen Thread ein schreibender
Zugriff erfolgen könnte (siehe Kap. 16).
static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
unsafe { COUNTER += inc; }

}

fn main() {
add_to_count(3);
unsafe { println!("COUNTER: {}", COUNTER); }

}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 11 / 36

Unsafe Rust (6) - Implementieren eines unsicheren Merkmals

Ein Trait ist unsafe, wenn mindestens eine Methode unsafe ist.
unsafe trait Foo {

// Methoden kommen hierhin
}

unsafe impl Foo for i32 {
// Methoden-Implementierungen kommen hierhin

}

fn main() {}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 12 / 36

Unsafe Rust (7) - Zugreifen auf Felder einer Vereinigung (union)

Unions sind ähnlich wie struct, jedoch teilen sich alle Felder den gleichen Speicher. Unions werden häufig in C
Code verwendet.
#[repr(C)]
union MyUnion {

f1: u32,
f2: f32,

}

let u = MyUnion { f1: 1 };
let f = unsafe { u.f1 };

Quelle: https://doc.rust-lang.org/reference/items/unions.html

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 13 / 36

https://doc.rust-lang.org/reference/items/unions.html

Traits

Traits (20.2)

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 14 / 36

Traits

Siehe auch die Abschnitte 10.2 (Merkmale), 17.2 (Merkmalsobjekte)
Merkmal mit assoziiertem Typ

pub trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;
}

impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> { ... }

Beachte Unterschied generischer Datentyp ↔ assoziierter Typ

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 15 / 36

Standardparameter für generische Typen und Operatorüberladung

Trait definiert in std::ops::Add:
trait Add<Rhs=Self> {

type Output;

fn add(self, rhs: Rhs) -> Self::Output;
}

Standardtypparameter (default type parameter): Rhs=Self

Beispiel für Standardtyp:
struct Point {

x: i32,
y: i32,

}

... // siehe naechste Seite

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 16 / 36

Standardparameter für generische Typen und Operatorüberladung (2)

... // siehe vorherige Seite

impl Add for Point {
type Output = Point;

fn add(self, other: Point) -> Point {
Point {

x: self.x + other.x,
y: self.y + other.y,

}
}

}

Beachte: Hinter impl Add muss man nichts in spitzen Klammern angeben. Der “Normalfall” ist, dass zwei
gleiche Typen addiert werden.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 17 / 36

Standardparameter für generische Typen und Operatorüberladung (3)

Nun Rhs nicht der Standardtyp:
use std::ops::Add;

struct Millimeters(u32);
struct Meters(u32);

impl Add<Meters> for Millimeters {
type Output = Millimeters;

fn add(self, other: Meters) -> Millimeters {
Millimeters(self.0 + (other.0 * 1000))

}
}

Beachte: impl Add<Meters>, Meters ist nun der vom Standard abweichende Typ.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 18 / 36

Standardparameter für generische Typen und Operatorüberladung (4)

Standardtypparameter werden verwendet
um einen Typ zu erweitern, ohne bestehenden Code zu brechen.
um eine Anpassung in bestimmten Fällen zu ermöglichen, die die meisten Benutzer nicht benötigen (wie bei
impl Add<Meters>).

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 19 / 36

Eindeutige Syntax bei Methodenaufrufen

trait Animal {
fn baby_name() -> String;

}

struct Dog;

impl Dog {
fn baby_name() -> String { String::from("Spot") }

}

impl Animal for Dog {
fn baby_name() -> String { String::from("Welpe") }

}

...
<Dog as Animal>::baby_name(); // Animal::baby_name() kompiliert nicht!

Voll qualifizierte Syntax
<Type as Trait>::function(receiver_if_method, next_arg, ...);

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 20 / 36

Supermerkmale

OutlinePrint erfordert das Merkmal Display:
trait OutlinePrint: fmt::Display {

fn outline_print(&self) {
...

}

Unterschied zur Merkmalsabgrenzung (trait bound), siehe Kap. 10.2
Gegenbeispiel: impl OutlinePrint for Point {} würde nicht gehen, solange Display nicht für Point
implementiert ist.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 21 / 36

Das Newtype-Muster

Waisenregel: Merkmal kann nur dann auf einem Typ implementiert werden, wenn entweder das Merkmal
oder der Typ lokal im Crate vorkommen.
Umgehen der Waisenregel durch Newtype-Muster: Externe Merkmale auf externen Typen damit möglich.
Beispiel:
struct Wrapper(Vec<String>);

impl fmt::Display for Wrapper {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

write!(f, "[{}]", self.0.join(", "))
}

}

Falls der äussere Typ Wrapper alle Methoden des inneren Typs Vec haben soll, muss der Deref Trait
implementiert werden, so dass der innere Typ zurückgegeben wird.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 22 / 36

Fortgeschrittene Typen

Fortgeschrittene Typen (20.3)

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 23 / 36

Fortgeschrittene Typen

Das Newtype Muster

(siehe auch 20.2)
damit Werte nicht verwechselt werden können
Angabe von Einheiten (Bsp.: Millimeter, Meter)
Implementierungsdetails eines Typs abstrahieren, d.h. der neue Typ kann ein anderes API als der private
innere Typ haben
Kapselung, um Implementierungsdetails zu verbergen (siehe 17.1)

Typ-Synonyme mit Typ-Alias

type Kilometers = i32; //
type Result<T> = std::result::Result<T, std::io::Error>; // in std lib

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 24 / 36

Fortgeschrittene Typen (2)

Bessere Lesbarkeit
type Thunk = Box<dyn Fn() + Send + 'static>;

let f: Thunk = Box::new(|| println!("hallo"));

fn takes_long_type(f: Thunk) { ... }
fn returns_long_type() -> Thunk { ... }

Der “Niemals” Typ

! ist ein sogenannter “leerer Typ”, weil er keine Werte hat. Die folgende Funktion kehrt niemals zurück, deshalb
wird der ! Operator auch never type genannt:
fn bar() -> ! { ... }

continue gibt ! zurück, deshalb kompiliert der folgende Code:
let guess: u32 = match guess.trim().parse() {

Ok(num) => num,
Err(_) => continue, // ! kann in jeden anderen Typ umgewandelt werden

};
Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 25 / 36

Fortgeschrittene Typen (3)

Fortsetzung: Never Type
panic! gibt ! zurück, deswegen kann der Rückgabewert von unwrap() T sein:
impl<T> Option<T> {

pub fn unwrap(self) -> T {
match self {

Some(val) => val,
None => panic!("Aufruf von `Option::unwrap()` auf einem `None`-Wert"),

}
}

}

Typ des folgenden Ausdrucks ist !
loop {

print!("endlos");
}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 26 / 36

Fortgeschrittene Typen (4)

Dynamisch große Typen und das Merkmal Sized

DST (dynamically sized types, oder unsized types): Grösse erst zur Laufzeit bekannt.
Beispiel:

str ist DST
&str ist kein DST, siehe string slice, Kap. 4)

DST muss immer hinter Zeiger liegen: &str, Box<str>, Rc<str> (genauer: Zeiger + Länge),
Geht nicht:
let s1: str = "Guten Tag!";
let s2: str = "Wie geht es dir?";

Trait Objects sind auch DSTs (Kap. 17.2): &dyn Trait, Box<dyn Trait>, Rc<dyn Trait>

Mit Merkmal Sized werden alle Typen automatisch versehen, die eine feste Grösse haben. Die folgende linke
generische Funktion wird also wie rechts zu sehen behandelt. T kann also nur eine feste Grösse haben:
fn generic<T>(t: T) { ... } =======> fn generic<T: Sized>(t: T) { ... }

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 27 / 36

Fortgeschrittene Typen (5)

Lockerung mit ?Sized: “T kann Sized sein oder nicht” (geht nur bei Sized)
fn generic<T: ?Sized>(t: &T) { ... }

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 28 / 36

Erweiterte Funktionen und Funktionsabschlüsse (20.4)

Erweiterte Funktionen und Funktionsabschlüsse (Closures)

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 29 / 36

Erweiterte Funktionen und Funktionsabschlüsse (1)

Funktionszeiger

Funktionen haben den Typ fn (Funktionszeiger, function pointer)
fn add_one(x: i32) -> i32 {

x + 1
}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
f(arg) + f(arg)

}

fn main() {
let answer = do_twice(add_one, 5);

println!("Die Antwort ist: {}", answer);
}

Fn, FnMut, FnOnce sind Traits, fn ist ein Typ. Deswegen kann fn direkt in Funktionssignatur verwendet werden,
Traits nur über Merkmalsabgrenzungen.

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 30 / 36

Erweiterte Funktionen und Funktionsabschlüsse (2)

fn implementiert Fn, FnMut, FnOnce. Deswegen kann man eine Funktion an der Stelle einsetzen, an der eine
Closure erwartet wird.
Beispiel:
let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> =
list_of_numbers.iter().map(|i| i.to_string()).collect(); // Closure

Funktion to_string() im Trait ToString mit voll qualifiziertem Namen aufrufen:
let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> =
list_of_numbers.iter().map(ToString::to_string).collect();

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 31 / 36

Erweiterte Funktionen und Funktionsabschlüsse (3)

Enums: Jede Variante hat auch eine Initialisierungsfunktion (Erinnerung Kap. 6.1, Konstruktorfunktion,
IpAddr::V4()).
enum Status {

Value(u32),
Stop,

}

let list_of_statuses: Vec<Status> = (0u32..20).map(Status::Value).collect();

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 32 / 36

Erweiterte Funktionen und Funktionsabschlüsse (4)

Zurückgeben von Funktionsabschlüssen

Traits sind DSTs, deshalb kann man sie nicht direkt aus Funktionen zurück geben.
Funktionszeiger können auch nicht aus Funktionen zurück gegeben werden.
Lösung: Trait Object
fn returns_closure() -> Box<dyn Fn(i32) -> i32> {

Box::new(|x| x + 1)
}

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 33 / 36

Makros (20.5)

Deklarative Makros mit macro_rules!
Beispiel: vec!

Prozedurale Makros
Benutzerdefinierte Makros mit #[derive]

Attribut-ähnliche Makros, die benutzerdefinierte Attribute definieren, die bei jedem Element verwendet werden
können
Funktions-ähnliche Makros, die wie Funktionsaufrufe aussehen, aber auf den als Argument angegebenen Token
operieren

Der Unterschied zwischen Makros und Funktionen

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 34 / 36

Makros (2)

Deklarative Makros

“Makros am Beispiel” oder macro_rules! Makro
Vereinfachte Variante von vec! selber schreiben, so dass es wie folgt verwendet werden kann: let v:
Vec<u32> = vec![1, 2, 3];

#[macro_export]
macro_rules! vec {

($($x:expr),*) => {
{

let mut temp_vec = Vec::new();
$(

temp_vec.push($x);
)*
temp_vec

}
};

}

Lit.: The Little Book of Rust Macros https://veykril.github.io/tlborm/
Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 35 / 36

https://veykril.github.io/tlborm/

Makros (3)

Prozedurale Makros zur Code-Generierung aus Attributen

XXX to do
Wie man ein benutzerdefiniertes Makro mit derive schreibt

XXX to do
Attribut-ähnliche Makros

XXX to do
Funktions-ähnliche Makros

XXX to do

Hubert Högl (Technische Hochschule Augsburg / Informatik https://tha.de/~hhoegl)Systemnahe Programmierung in Rust 2025-12-18 13:07:14 36 / 36

