
April 2017 DocID027412 Rev 8 1/29

1

UM1860
User manual

Getting started with STM32CubeL4 for STM32L4 Series

Introduction

STMCube™ is an STMicroelectronics original initiative to make developers' lives easier by
reducing development effort, time and cost. STM32Cube covers the whole STM32 portfolio.

STM32Cube Version 1.x includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as
STM32CubeL4 for STM32L4 Series):

– The STM32Cube HAL, STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio.

– Low Layer APIs (LL) offering a fast light-weight expert-oriented layer which is
closer to the hardware than the HAL. LL APIs are available only for a set of
peripherals.

– A consistent set of middleware components such as RTOS, USB, STMTouch™,
FatFs and Graphics.

– All embedded software utilities delivered with a full set of examples.

This user manual describes how to get started with the STM32CubeL4 firmware package.

Section 1 describes the main features of STM32CubeL4 firmware, part of the STMCube™
initiative. Section 2 and Section 3 provide an overview of the STM32CubeL4 architecture
and firmware package structure.

www.st.com

http://www.st.com

Contents UM1860

2/29 DocID027412 Rev 8

Contents

1 STM32CubeL4 main features . 6

2 STM32CubeL4 architecture overview . 7

2.1 Level 0 . 7

2.1.1 Board support package (BSP) . 8

2.1.2 Hardware abstraction layer (HAL) and Low Layer (LL) 8

2.1.3 Basic peripheral usage examples . 9

2.2 Level 1 . 9

2.2.1 Middleware components . 9

2.2.2 Examples based on the middleware components 11

2.3 Level 2 .11

3 STM32CubeL4 firmware package overview . 12

3.1 Supported STM32L4 devices and hardware . 12

3.2 Firmware package overview . 14

4 Getting started with STM32CubeL4 . 17

4.1 Running the first example . 17

4.2 Developing user application . 19

4.2.1 HAL application . 19

4.2.2 LL application . 21

4.3 Using STM32CubeMX to generate initialization C code 22

4.4 Getting STM32CubeL4 release updates . 22

4.4.1 Installing and running the STM32CubeUpdater program 22

4.5 STM32 Nucleo Power GUI tool . 23

5 FAQ . 24

5.1 What is the license scheme for the STM32CubeL4 firmware? 24

5.2 What boards are supported by the STM32CubeL4 firmware package? . 24

5.3 Are any examples provided with the ready-to-use toolset projects? 24

5.4 Is there any link with Standard Peripheral Libraries? 24

5.5 Does the HAL drivers take benefit from interrupts or DMA?
How can this be controlled? . 24

DocID027412 Rev 8 3/29

UM1860 Contents

3

5.6 How are the product/peripheral specific features managed? 25

5.7 How can STM32CubeMX generate code based on embedded software? 25

5.8 How can I get regular updates on the latest STM32CubeL4
firmware releases? . 25

5.9 When should I use HAL versus LL drivers? . 25

5.10 How can I include LL drivers in my environment?
Is there any LL configuration file as for HAL? . 25

5.11 Can I use HAL and LL drivers together? If yes, what are the constraints? 25

5.12 Is there any LL APIs which are not available with HAL 26

5.13 Why are SysTick interrupts not enabled on LL drivers? 26

5.14 How are LL initialization APIs enabled? . 26

6 Revision history . 27

List of tables UM1860

4/29 DocID027412 Rev 8

List of tables

Table 1. Macros for STM32L4 Series . 12
Table 2. Boards for STM32L4 Series . 13
Table 3. Number of examples available for each board . 16
Table 4. Document revision history . 27

DocID027412 Rev 8 5/29

UM1860 List of figures

5

List of figures

Figure 1. STM32CubeL4 firmware components . 6
Figure 2. STM32CubeL4 firmware architecture . 7
Figure 3. STM32CubeL4 firmware package structure . 14
Figure 4. STM32CubeL4 examples overview . 15

STM32CubeL4 main features UM1860

6/29 DocID027412 Rev 8

1 STM32CubeL4 main features

STM32CubeL4 gathers, in a single package, all the generic embedded software
components required to develop an application on STM32L4 microcontrollers. In line with
the STMCube™ initiative, this set of components is highly portable, not only within
STM32L4 Series but also to other STM32 series.

STM32CubeL4 is fully compatible with STM32CubeMX code generator that allows the
generation of initialization code. The package includes Low Layer (LL) and hardware
abstraction layer (HAL) APIs that cover the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards. The HAL and LL APIs are
available in open-source BSD license for user convenience.

STM32CubeL4 package also contains a set of middleware components with the
corresponding examples. They come in free user-friendly license terms:

• Full USB Host and Device stack supporting many classes.

– Host Classes: HID, MSC, CDC, Audio, MTP

– Device Classes: HID, MSC, CDC, Audio, DFU, LPM, BCD.

• STemWin, a professional graphical stack solution available in binary format and based
on STMicroelectronics partner solution SEGGER emWin

• CMSIS-RTOS implementation with FreeRTOS open source solution

• FAT File system based on open source FatFs solution

• STMTouch touch sensing library solution.

Several applications and demonstrations implementing all these middleware components
are also provided in the STM32CubeL4 package.

Figure 1. STM32CubeL4 firmware components

DocID027412 Rev 8 7/29

UM1860 STM32CubeL4 architecture overview

28

2 STM32CubeL4 architecture overview

The STM32Cube firmware solution is built around three independent levels that interact
easily as described in Figure 2:

Figure 2. STM32CubeL4 firmware architecture

2.1 Level 0

This level is divided into three sub-layers:

• Board Support Package (BSP)

• Hardware Abstraction Layer (HAL)

– HAL peripheral drivers

– Low Layer drivers

• Basic peripheral usage examples.

STM32CubeL4 architecture overview UM1860

8/29 DocID027412 Rev 8

2.1.1 Board support package (BSP)

This layer offers a set of APIs relative to the hardware components in the hardware boards
(such as LCD, Audio, microSD and MEMS drivers). It is composed of two parts:

• Component

This is the driver relative to the external device on the board and not to the STM32. The
component driver provides specific APIs to the BSP driver external components and is
portable on any other board.

• BSP driver

It allows linking of the component driver to a specific board and provides a set of user-
friendly APIs. The API naming rule is BSP_FUNCT_Action().

Example: BSP_LED_Init(), BSP_LED_On()

The BSP is based on a modular architecture allowing easy porting to any hardware by just
implementing the low-level routines.

2.1.2 Hardware abstraction layer (HAL) and Low Layer (LL)

The STM32CubeL4 HAL and LL are complementary and cover a wide range of applications
requirements:

• The HAL drivers offer high-level function-oriented highly-portable APIs. They hide the
MCU and peripheral complexity to end user.

The HAL drivers provide generic multi-instance feature-oriented APIs which simplify
user application implementation by providing ready-to-use processes. As an example,
for the communication peripherals (I2S, UART…), the HAL drivers provide APIs
allowing the initialization and configuration of the peripheral, the management of data
transfer based on polling, the interrupt or DMA process, and the handling of
communication errors that may raise. The HAL driver APIs are split in two categories:

– Generic APIs providing common and generic functions to all the STM32 series

– Extension APIs providing specific and customized functions for a specific family or
a specific part number.

• The Low Layer APIs provide low-level APIs at register level, with better optimization but
less portability. They require a deep knowledge of MCU and peripheral specifications.

The LL drivers are designed to offer a fast light-weight expert-oriented layer which is
closer to the hardware than the HAL. Contrary to the HAL, LL APIs are not provided for
peripherals where optimized access is not a key feature, or for those requiring heavy
software configuration and/or complex upper-level stack (such as FSMC, USB, or
SDMMC).

The LL drivers feature:

– A set of functions to initialize peripheral main features according to the parameters
specified in data structures

– A set of functions used to fill initialization data structures with the reset values
corresponding to each field

– Function for peripheral de-initialization (peripheral registers restored to their
default values)

– A set of inline functions for direct and atomic register access

– Full independence from HAL and capability to be used in standalone mode
(without HAL drivers)

– Full coverage of the supported peripheral features.

DocID027412 Rev 8 9/29

UM1860 STM32CubeL4 architecture overview

28

2.1.3 Basic peripheral usage examples

This layer includes the examples built over the STM32 peripheral and which use either the
HAL or/and the Low Layer drivers APIs as well as the BSP resources.

2.2 Level 1

This level is divided into two sub-layers:

• Middleware components

• Examples based on the middleware components.

2.2.1 Middleware components

The middleware is a set of libraries covering USB Host and Device Libraries, STMTouch
touch sensing, STemWin, FreeRTOS and FatFs. Horizontal interactions between the
components of this layer are done directly by calling the feature APIs, while the vertical
interaction with the low-level drivers is done through specific callbacks and static macros
implemented in the library system call interface. For example, the FatFs implements the disk
I/O driver to access microSD drive or the USB Mass Storage Class.

STM32CubeL4 architecture overview UM1860

10/29 DocID027412 Rev 8

The main features of each middleware component are:

• USB Host and Device libraries

– Several USB classes supported (Mass-Storage, HID, CDC, DFU, LPM and BCD).

– Support of multi-packet transfer features that allows large amounts of data to be
sent without splitting them into maximum packet size transfers.

– Use of configuration files to change the core and the library configuration without
changing the library code (Read Only).

– 32-bit aligned data structures to handle DMA-based transfer in high-speed modes.

– Support of multi USB OTG core instances from user level through configuration
file. This allows the execution of operations with more than one USB host/device
peripheral.

– RTOS and Standalone operation.

– Link with low-level driver through an abstraction layer using the configuration file
to avoid any dependency between the Library and the low-level drivers.

• STemWin Graphical stack

– Professional grade solution for GUI development based on SEGGER emWin
solution.

– Optimized display drivers.

– Software tools for code generation and bitmap editing (STemWin Builder…).

• FreeRTOS

– Open source standard.

– CMSIS compatibility layer.

– Tickless operation during low-power mode.

– Integration with all STM32Cube middleware modules.

• FAT File system

– FATFS FAT open source library.

– Long file name support.

– Dynamic multi-drive support.

– RTOS and standalone operation.

– Examples with microSD.

• STM32 Touch sensing library

Robust STMTouch capacitive touch sensing solution supporting proximity, touchkey,
linear and rotary touch sensors. It is based a proven surface charge transfer acquisition
principle.

DocID027412 Rev 8 11/29

UM1860 STM32CubeL4 architecture overview

28

2.2.2 Examples based on the middleware components

Each middleware component comes with one or more examples (called also Applications)
showing how to use it. Integration examples that use several middleware components are
provided as well.

2.3 Level 2

This level is composed of a single layer which consist in a global real-time and graphical
demonstration based on the middleware service layer, the low-level abstraction layer and
the basic peripheral usage applications for board based features.

STM32CubeL4 firmware package overview UM1860

12/29 DocID027412 Rev 8

3 STM32CubeL4 firmware package overview

3.1 Supported STM32L4 devices and hardware

STM32Cube offers highly portable hardware abstraction layer (HAL) built around a generic
architecture. It allows the build-upon layers, such as the middleware layer, to implement
their functions without knowing, in-depth, the MCU used. This improves the library code re-
usability and guarantees an easy portability on other devices.

In addition, thanks to its layered architecture, the STM32CubeL4 offers full support of all
STM32L4 Series. The user has only to define the right macro in stm32l4xx.h.

Table 1 gives the macro to be defined depending on the STM32L4 device used. This macro
must also be defined in the compiler preprocessor.

Table 1. Macros for STM32L4 Series

Macro defined in
stm32l4xx.h

STM32L4 devices

STM32L431xx
STM32L431CC, STM32L431KC, STM32L431RC, STM32L431VC,
STM32L431CB, STM32L431KB, STM32L431RB

STM32L432xx STM32L432KC, STM32L432KB

STM32L433xx
STM32L433CC, STM32L433RC, STM32L433VC, STM32L433CB,
STM32L433RB

STM32L442xx STM32L442KC

STM32L443xx STM32L443CC, STM32L443RC, STM32L443VC

STM32L451xx
STM32L451CC, STM32L451RC, STM32L451VC, STM32L451CE,
STM32L451RE, STM32L451VE

STM32L452xx
STM32L452CC, STM32L452RC, STM32L452VC, STM32L452CE,
STM32L452RE, STM32L452VE

STM32L462xx STM32L462CE, STM32L462RE, STM32L462VE

STM32L471xx
STM32L471RG, STM32L471JG, STM32L471VG, STM32L471QG,
STM32L471ZG, STM32L471RE, STM32L471JE, STM32L471VE,
STM32L471QE, STM32L471ZE

STM32L475xx
STM32L475RG, STM32L475JG, STM32L475VG, STM32L475QG,
STM32L475ZG, STM32L475RE, STM32L475JE, STM32L475VE,
STM32L475QE, STM32L475ZE, STM32L475RC, STM32L475VC

STM32L476xx
STM32L476RG, STM32L476JG, STM32L476VG, STM32L476QG,
STM32L476ZG, STM32L476RE, STM32L476JE, STM32L476VE,
STM32L476QE, STM32L476ZE, STM32L476RC, STM32L476VC

STM32L485xx STM32L485JC, STM32L485JE

STM32L486xx
STM32L486RG, STM32L486JG, STM32L486VG, STM32L486QG,
STM32L486ZG

STM32L496xx
STM32L496RG, STM32L496VG, STM32L496QG, STM32L496ZG,
STM32L496AG

STM32L4A6xx
STM32L4A6RG, STM32L4A6VG, STM32L4A6QG, STM32L4A6ZG,
STM32L4A6AG

DocID027412 Rev 8 13/29

UM1860 STM32CubeL4 firmware package overview

28

STM32CubeL4 features a rich set of examples and applications at all levels making it easy
to understand and use any HAL driver and/or middleware components. These examples run
on STMicroelectronics boards as listed in Table 2.

STM32CubeL4 supports Nucleo-32, Nucleo-64 and Nucleo-144 boards:

• Nucleo-64 and Nucleo-144 boards are compatible with Adafruit LCD display Arduino™
UNO shields, which embed a microSD connector and a joystick in addition to the LCD.

• Nucleo-32 boards compatible with Gravitech 7-segment display Arduino™ NANO
shields, which allow numbers or characters up to four digits to be displayed.

The Arduino™ shield drivers are provided within the BSP component. Their usage is
illustrated by a demonstration firmware.

The STM32CubeL4 firmware is able to run on any compatible hardware. The user simply
updates the BSP drivers to port the provided examples on his own board, if this latter has
the same hardware features (LED, LCD display, buttons...).

Table 2. Boards for STM32L4 Series

Board STM32L4 devices supported

STM32L476G-EVAL STM32L476xx

32L476GDISCOVERY STM32L476xx

NUCLEO-L476RG STM32L476xx

NUCLEO-L432KC STM32L432xx

NUCLEO-L452RE STM32L452xx

NUCLEO-L496ZG STM32L496xx

32L496GDISCOVERY STM32L496xx

B-L475E-IOT01 STM32L475xx

STM32CubeL4 firmware package overview UM1860

14/29 DocID027412 Rev 8

3.2 Firmware package overview

The STM32CubeL4 firmware solution is provided in one single zip package having the
structure shown in Figure 3.

Figure 3. STM32CubeL4 firmware package structure

1. The library files in brown must not be modified by the user, while the files in blue can be modified.

DocID027412 Rev 8 15/29

UM1860 STM32CubeL4 firmware package overview

28

For each board, a set of examples is provided with pre-configured projects for EWARM,
MDK-ARM, SW4STM32 and TrueSTUDIO toolchains.

Figure 4 shows the projects structure for the NUCLEO-L476RG board.

Figure 4. STM32CubeL4 examples overview

The examples are classified depending on the STM32Cube level to which they apply, and
are named as explained below:

• Level 0 examples are called Examples, Examples_LL and Examples_MIX. They use
respectively HAL drivers, LL drivers and a mix of HAL and LL drivers without any
middleware component.

• Level 1 examples are called Applications. They provide typical use cases of each
middleware component.

STM32CubeL4 firmware package overview UM1860

16/29 DocID027412 Rev 8

The template projects available in the Templates and Templates_LL directories allow the
quick build of any firmware application on a given board.

 All examples have the same structure:

• \Inc folder that contains all header files.

• \Src folder for the sources code.

• \EWARM, \MDK-ARM, \SW4STM32 and \TrueSTUDIO folders contain the pre-
configured project for each toolchain.

• readme.txt describing the example behavior and environment needed to make it work.

Table 3 gives the number of projects available for each board.

Table 3. Number of examples available for each board

Level
NUCLEO
-L432KC

STM32
L476G
_EVAL

NUCLEO
-L476RG

32L476G
DISCO
VERY

NUCLEO
-L496ZG

32L496G
DISCO
VERY

NUCLEO
-L452RE

B-
L475E-
IOT01

Total

Templates_LL 1 1 1 1 1 1 1 1 8

Templates 1 1 1 1 1 1 1 1 8

Examples_MIX 0 0 12 0 10 2 0 0 24

Examples_LL 0 0 91 0 94 1 0 0 186

Examples 62 87 69 17 101 22 82 1 441

Demonstrations 1 1 1 1 1 1 1 0 7

Applications 5 29 1 5 11 11 15 11 88

Total 70 119 176 25 219 39 100 14 762

DocID027412 Rev 8 17/29

UM1860 Getting started with STM32CubeL4

28

4 Getting started with STM32CubeL4

4.1 Running the first example

This section explains how simple is to run a first example within STM32CubeL4. It uses as
an illustration the generation of a simple LED toggle running on an STM32L476RG Nucleo
board:

1. Download the STM32CubeL4 firmware package. Unzip it into a directory. Make sure
not to modify the package structure shown in Figure 3. Note that it is also
recommended to copy the package at a location close to the root volume (e.g. C\Eval
or G:\Tests) to avoid some IDEs encounter problems when the path length is too long.

2. Browse to \Projects\STM32L476RG-Nucleo\Examples.

3. Open \GPIO, then \GPIO_EXTI folder.

4. Open the project with the preferred toolchain. A quick overview on how to open, build
and run an example with the supported toolchains is given below.

5. Rebuild all files and load the image into target memory.

6. Run the example: each time the USER pushbutton is pressed, the LED2 toggles (for
more details, refer to the example readme file).

Getting started with STM32CubeL4 UM1860

18/29 DocID027412 Rev 8

To open, build and run an example with the supported toolchains:, follow the steps below:

• EWARM

a) Under the example folder, open \EWARM sub-folder.

b) Launch the Project.eww workspace(a).

c) Rebuild all files: Project->Rebuild all.

d) Load project image: Project->Debug.

e) Run program: Debug->Go(F5).

• MDK-ARM

a) Under the example folder, open \MDK-ARM sub-folder.

b) Launch the Project.uvprojx workspace(a).

c) Rebuild all files: Project->Rebuild all target files.

d) Load project image: Debug->Start/Stop Debug Session.

e) Run program: Debug->Run (F5).

• SW4STM32

a) Open the SW4STM32 toolchain

b) Click File->Switch Workspace->Other and browse to the SW4STM32
workspace directory

c) Click File->Import, select General->Existing Projects into Workspace and then
click Next.

d) Browse to the SW4STM32 workspace directory and select the project.

e) Rebuild all project files: select the project in the Project explorer window then
click the Project->build project menu.

f) Run program: Run->Debug (F11)

• TrueSTUDIO

a) Open the TrueSTUDIO toolchain.

b) Click File->Switch Workspace->Other and browse to TrueSTUDIO workspace
directory.

c) Click File->Import, select General->Existing Projects into Workspace and then
click Next.

d) Browse to the TrueSTUDIO workspace directory, select the project.

e) Rebuild all project files: select the project in the Project explorer window then
click the Project->build project menu.

f) Run program: Run->Debug (F11).

a. The workspace name may change from one example to another.

DocID027412 Rev 8 19/29

UM1860 Getting started with STM32CubeL4

28

4.2 Developing user application

4.2.1 HAL application

This section describes the steps required to create user HAL application with
STM32CubeL4:

1. Create the project

To create a new project, the user can either start from the Template project provided for
each board under \Projects\<STM32xxx_yyy>\Templates or from any available project
under \Projects\<STM32xxy_yyy>\Examples or \Projects\<STM32xx_yyy>\Applications
(where <STM32xxx_yyy> refers to the board name, e.g. STM32L476G-EVAL).

The Template project provides an empty main loop function, however it is a good
starting point to get familiar with project settings for STM32CubeL4.
The template main characteristics are the following:

– It contains the source code of HAL, CMSIS and BSP drivers, that are the minimal
components required to develop a code on a given board.

– It contains the include paths for all the firmware components.

– It selects the supported STM32L4 device and allows the configuration of CMSIS
and HAL drivers accordingly.

– It provides ready-to-use user files, that are pre-configured as follows:

HAL initialized with default time base with ARM Core SysTick.

SysTick ISR implemented for HAL_Delay() purpose.

Note: When copying an existing project to another location, make sure to update the include
paths.

2. Add the necessary middleware to the project (optional)

The available middleware stacks are: USB Host and Device library, STMTouch touch
sensing, STemWin, FreeRTOS and FatFs. To know which source files need to be
added in the project files list, refer to the documentation provided for each middleware.
or look at the applications available under
\Projects\STM32xxx_yyy\Applications\<MW_Stack> (where <MW_Stack> refers to the
middleware stack, e.g. USB_Device) to know which sources files and which include
paths to add.

3. Configure the firmware components

The HAL and middleware components offer a set of build time configuration options
using macros # define declared in a header file. A template configuration file is
provided within each component, it has to be copied to the project folder (usually the
configuration file is named xxx_conf_template.h, the word ‘_template’ needs to be
removed when copying it to the project folder). The configuration file provides enough
information to know the impact of each configuration option. More detailed information
is available in the documentation provided for each component.

4. Start the HAL Library

After jumping to the main program, the application code must call HAL_Init() API to
initialize the HAL Library, which do the following tasks:

a) Configuration of the Flash prefetch and SysTick interrupt priority (through macros
defined in stm32l4xx_hal_conf.h).

b) Configuration of the SysTick to generate an interrupt each 1 msecond at the
SysTick interrupt priority TICK_INT_PRIO defined in stm32l4xx_hal_conf.h, which

Getting started with STM32CubeL4 UM1860

20/29 DocID027412 Rev 8

is clocked by the MSI (at this stage, the clock is not yet configured and thus the
system is running from the internal 4 MHz MSI).

c) Setting of NVIC Group Priority to 4.

d) Call of HAL_MspInit() callback function defined in stm32l4xx_hal_msp.c user file
to perform global low-level hardware initializations.

5. Configure the system clock

The system clock configuration is done by calling the two APIs described below:

a) HAL_RCC_OscConfig(): this API configures the internal and/or external
oscillators, as well as the PLL source and factors. The user chooses to configure
one oscillator or all oscillators. The PLL configuration can be skipped if there is no
need to run the system at high frequency.

b) HAL_RCC_ClockConfig(): this API configures the system clock source, the Flash
memory latency and AHB and APB prescalers.

6. Initialize the peripheral

a) First write the peripheral HAL_PPP_MspInit function. Proceed as follows:

– Enable the peripheral clock.

– Configure the peripheral GPIOs.

– Configure DMA channel and enable DMA interrupt (if needed).

– Enable peripheral interrupt (if needed).

b) Edit the stm32xxx_it.c to call the required interrupt handlers (peripheral and DMA),
if needed.

c) Write process complete callback functions if peripheral interrupt or DMA is used.

d) In the main.c file, initialize the peripheral handle structure then call the function
HAL_PPP_Init() to initialize the peripheral.

7. Develop the application

At this stage, the system is ready and the user can start developing the application
code.

– The HAL provides intuitive and ready-to-use APIs to configure the peripheral. It
supports polling, interrupts and DMA programming model, to accommodate any
application requirements. For more details on how to use each peripheral, refer to
the rich examples set provided in the STM32CubeL4 package.

– If the application has some real-time constraints, the user finds a large set of
examples showing how to use FreeRTOS and how integrate it with all middleware
stacks provided within STM32CubeL4. This is a good starting point to develop the
application.

Caution: In the default HAL implementation, SysTick timer is used as timebase: it generates
interrupts at regular time intervals. If HAL_Delay() is called from peripheral ISR process,
make sure that the SysTick interrupt has higher priority (numerically lower) than the
peripheral interrupt. Otherwise, the caller ISR process will be blocked. Functions affecting
timebase configurations are declared as __weak to make override possible in case of other
implementations in user file (using a general purpose timer for example or other time
source). For more details, refer to HAL_TimeBase example.

DocID027412 Rev 8 21/29

UM1860 Getting started with STM32CubeL4

28

4.2.2 LL application

This section describes the steps needed to create a LL application using STM32CubeL4.

1. Create the project

To create a new project, the user can either start from the Templates_LL project
provided for each board under \Projects\<STM32xxx_yyy>\Templates_LL or from any
available project under \Projects\<STM32xxy_yyy>\Examples_LL (<STM32xxx_yyy>
refers to the board name, such as STM32L476RG-Nucleo).

The Template project provides an empty main loop function, however it is a good
starting point to get familiar with project settings for STM32CubeL4.

The template main characteristics are the following:

– It contains the source code of LL and CMSIS drivers, that are the minimal
components to develop a code on a given board.

– It contains the include paths for all the required firmware components.

– It selects the supported STM32L4 device and allows the configuration of CMSIS
and LL drivers accordingly.

– It provides ready-to-use user files, that are pre-configured as follows:

main.h: LED & USER_BUTTON definition abstraction layer

main.c: System clock configuration for maximum frequency.

2. Port an existing project to another board

To port an existing project to another target board, start from the Templates_LL project
provided for each board and available under
\Projects\<STM32xxx_yyy>\Templates_LL:

a) Select an LL example

To find the board on which LL examples are deployed, refer to the list of LL
examples in STM32CubeProjectsList.html, to Table 3: Number of examples
available for each board, or to application note “STM32Cube firmware examples
for STM32L4 Series” (AN4726).

b) Port the LL example

– Copy/paste the Templates_LL folder to keep the initial source or directly update
the existing Templates_LL project.

– Then LL example porting consists mainly of replacing Templates_LL files by the
Examples_LL targeted project.

– Keep all board specific parts. For reasons of clarity, board specific parts have been
flagged with specific tags:

/* =========== BOARD SPECIFIC CONFIGURATION CODE BEGIN =========== */

/* ============ BOARD SPECIFIC CONFIGURATION CODE END ============= */

Thus the main porting steps are the following:

– Replace stm32l4xx_it.h file

– Replace stm32l4xx_it.c file

– Replace main.h file and update it: keep the LED and user button definition of the
LL template under "BOARD SPECIFIC CONFIGURATION" tags.

Getting started with STM32CubeL4 UM1860

22/29 DocID027412 Rev 8

– Replace main.c file, and update it:

Keep the clock configuration of the SystemClock_Config() LL template: function
under "BOARD SPECIFIC CONFIGURATION" tags.

Depending on the LED definition, replace all LEDx occurrences with another LEDy
available in main.h.

Thanks to these adaptations, the example should be functional on the targeted
board.

4.3 Using STM32CubeMX to generate initialization C code

An alternative to steps 1 to 6 described in Section 4.2 consists of using the STM32CubeMX
 tool to generate code to initialize the system, peripherals and middleware (steps 1 to 6
above) through a step-by-step process:

1. Select the STMicroelectronics STM32 microcontroller that matches the required set of
peripherals.

2. Configure each required embedded software thanks to a pinout-conflict solver, a clock-
tree setting helper, a power consumption calculator, and the utility performing MCU
peripheral configuration (e.g. GPIO or USART) and middleware stacks (e.g. USB).

3. Generate the initialization C code based on the configuration selected. This code is
ready-to-use within several development environments. The user code is kept at the
next code generation.

For more information, please refer to STM32CubeMX user manual (UM1718).

4.4 Getting STM32CubeL4 release updates

The STM32CubeL4 firmware package comes with an updater utility, STM32CubeUpdater,
also available as a menu within STM32CubeMX code generation tool.

The updater solution detects new firmware releases and patches available from www.st.com
and proposes to download them to the user’s computer.

4.4.1 Installing and running the STM32CubeUpdater program

Follow the sequence below to install and run the STM32CubeUpdater:

1. To launch the installation, double-click the SetupSTM32CubeUpdater.exe file.

2. Accept the license terms and follow the different installation steps.

3. Upon successful installation, STM32CubeUpdater becomes available as an
STMicroelectronics program under Program Files and is automatically launched. The
STM32CubeUpdater icon appears in the system tray. Right-click the updater icon and
select Updater Settings to configure the Updater connection and whether to perform
manual or automatic checks. For more details on Updater configuration, refer to
section 3 of STM32CubeMX user manual - UM1718).

DocID027412 Rev 8 23/29

UM1860 Getting started with STM32CubeL4

28

4.5 STM32 Nucleo Power GUI tool

The STM32CubeL4 firmware package comes with a Windows® graphical user interface
(GUI) tool available under Utilities\PC_Software folder. This tool allows connection via the
USB ST-Link virtual COM port, to any STM32 Nucleo hardware boards supported by the
firmware package. It allows the selection of various low-power modes and benchmarking
codes thanks to the available binary files. Users therefore quickly assess STM32L4 low-
power performance.

FAQ UM1860

24/29 DocID027412 Rev 8

5 FAQ

5.1 What is the license scheme for the STM32CubeL4 firmware?

The HAL is distributed under a non-restrictive BSD (Berkeley Software Distribution) license.

The middleware stacks made by STMicroelectronics (USB Host and Device Libraries,
STemWin) come with a licensing model allowing easy reuse, provided it runs on an
STMicroelectronics device.

The middleware based on well-known open-source solutions (FreeRTOS and FatFs) have
user-friendly license terms. For more details, refer to the license agreement of each
middleware.

5.2 What boards are supported by the STM32CubeL4 firmware
package?

The STM32CubeL4 firmware package provides BSP drivers and ready-to-use examples for
the following STM32L4 boards: STM32L476G-EVAL, 32L476GDISCOVERY, NUCLEO-
L476RG, NUCLEO-L432KC, 32L496GDISCOVERY and NUCLEO-L496ZG.

5.3 Are any examples provided with the ready-to-use toolset
projects?

Yes. STM32CubeL4 provides a rich set of examples and applications. They come with the
pre-configured projects for IAR, Keil and GCC toolchains.

5.4 Is there any link with Standard Peripheral Libraries?

The STM32Cube HAL and LL drivers are the replacement of the standard peripheral library:

• The HAL drivers offer a higher abstraction level compared to the standard peripheral
APIs. They focus on peripheral common features rather than hardware. Their higher
abstraction level allows the definition of a set of user-friendly APIs that can be easily
ported from one product to another.

• The LL drivers offer low-level APIs at registers level. They are organized in a simpler
and clearer way than direct register accesses. LL drivers also include peripheral
initialization APIs, which are more optimized compared to what is offered by the SPL,
while being functionally similar. Compared to HAL drivers, these LL initialization APIs
allows an easier migration from the SPL to the STM32Cube LL drivers, since each SPL
API has its equivalent LL API(s).

5.5 Does the HAL drivers take benefit from interrupts or DMA?
How can this be controlled?

Yes, they do. The HAL layer supports three API programming models: polling, interrupt and
DMA (with or without interrupt generation).

DocID027412 Rev 8 25/29

UM1860 FAQ

28

5.6 How are the product/peripheral specific features managed?

The HAL drivers offer extended APIs, i.e. specific functions as add-ons to the common API
to support features available on some products/lines only.

5.7 How can STM32CubeMX generate code based on embedded
software?

STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their
peripherals and software, that provides a graphical representation to the user and generates
.h/.c files based on the user configuration.

5.8 How can I get regular updates on the latest STM32CubeL4
firmware releases?

The STM32CubeL4 firmware package comes with an updater utility, STM32CubeUpdater,
that can be configured for automatic or on-demand checks for new firmware package
updates (new releases or/and patches).

STM32CubeUpdater is integrated as well within the STM32CubeMX tool. When using this
tool for STM32L4 configuration and initialization C code generation, the user benefits from
STM32CubeMX self-updates as well as STM32CubeL4 firmware package updates.

For more details, refer to Section 4.4.

5.9 When should I use HAL versus LL drivers?

HAL drivers offer high-level and function-oriented APIs, with a high level of portability.
Product/IPs complexity is hidden for end users.

LL drivers offer low-level APIs at registers level, with a better optimization but less
portability. They require a deep knowledge of product/IPs specifications.

5.10 How can I include LL drivers in my environment?
Is there any LL configuration file as for HAL?

There is no configuration file. Source code shall directly include the necessary
stm32l4xx_ll_ppp.h file(s).

5.11 Can I use HAL and LL drivers together? If yes, what are the
constraints?

It is possible to use both HAL and LL drivers. One handles the IP initialization phase with
HAL and then manage the I/O operations with LL drivers.

The major difference between HAL and LL is that HAL drivers require to create and use
handles for operation management while LL drivers operates directly on peripheral
registers. Mixing HAL and LL is illustrated in Examples_MIX example.

FAQ UM1860

26/29 DocID027412 Rev 8

5.12 Is there any LL APIs which are not available with HAL

Yes, there are.

A few Cortex® APIs have been added in stm32l4xx_ll_cortex.h e.g. for accessing SCB or
SysTick registers.

5.13 Why are SysTick interrupts not enabled on LL drivers?

When using LL drivers in standalone mode, there is no need to enable SysTick interrupts
because they are not used in LL APIs, while HAL functions requires SysTick interrupts to
manage timeouts.

5.14 How are LL initialization APIs enabled?

The definition of LL initialization APIs and associated resources (structure, literals and
prototypes) is conditioned by the USE_FULL_LL_DRIVER compilation switch.

To be able to use LL APIs, add this switch in the toolchain compiler preprocessor.

DocID027412 Rev 8 27/29

UM1860 Revision history

28

6 Revision history

Table 4. Document revision history

Date Revision Changes

16-Feb-2015 1 Initial release.

15-Sep-2015 2

Added STM32L475xx and STM32L485xx in Table 1:
Macros for STM32L4 Series.

Added Low Layer (LL) drivers in Section : Introduction,
Section 1: STM32CubeL4 main features, Section 2:
STM32CubeL4 architecture overview and Section 3:
STM32CubeL4 firmware package overview.

Added new Examples_LL and Examples_MIX examples
in Section 3.2: Firmware package overview/

Added SW4STM32 toolchain in Section 3.2: Firmware
package overview and in Section 4.1: Running the first
example.

Updated Section 5: FAQ to add low-layer drivers.

28-Jan-2016 3

Updated Table 3: Number of examples available for
each board.

Updated LL driver features in Section 2.1.2: Hardware
abstraction layer (HAL) and Low Layer (LL).

Updated Section 5.4: Is there any link with Standard
Peripheral Libraries? and added Section 5.14: How are
LL initialization APIs enabled?.

25-Feb-2016 4

Added STM32L431xx, STM32L432xx, STM32L433xx,
STM32L442xx and STM32L443xx macros in Table 1:
Macros for STM32L4 Series.

Added NUCLEO-L432KC board in Table 2: Boards for
STM32L4 Series, Table 3: Number of examples
available for each board and Section 5.2: What boards
are supported by the STM32CubeL4 firmware
package?.

17-Oct-2016 5

Added STM32L451xx, STM32L452xx and
STM32L462xx in Table 1: Macros for STM32L4 Series.

Added NUCLEO-L452RE in Table 2: Boards for
STM32L4 Series, Table 3: Number of examples
available for each board and Section 5.2: What boards
are supported by the STM32CubeL4 firmware package?

Updated Section 4.2: Developing user application to
distinguish between HAL application (Section 4.2.1:
HAL application) and LL application (Section 4.2.2: LL
application).

13-Dec-2016 6
Removed STM32L451xx, STM32L452xx and
STM32L462xx part numbers, as well as NUCLEO-
L452RE.

Revision history UM1860

28/29 DocID027412 Rev 8

20-Feb-2017 7

Updated Figure 1: STM32CubeL4 firmware
components.

Added STM32L496xx and STM32L4A6xx in Table 1:
Macros for STM32L4 Series.

Added NUCLEO-L496ZG and 32L496GDISCOVERY in
Table 2: Boards for STM32L4 Series, Table 3: Number
of examples available for each board and Section 5.2:
What boards are supported by the STM32CubeL4
firmware package?.

Added Section 4.5: STM32 Nucleo Power GUI tool.

19-Apr-2017 8

Added:

– STM32L451xx, STM32L452xx and STM32L462xx in
Table 1: Macros for STM32L4 Series

– NUCLEO-L452RE and B-L475E-IOT01 in Table 2:
Boards for STM32L4 Series, Table 3: Number of
examples available for each board and Section 5.2:
What boards are supported by the STM32CubeL4
firmware package?

Table 4. Document revision history (continued)

Date Revision Changes

DocID027412 Rev 8 29/29

UM1860

29

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 STM32CubeL4 main features
	2 STM32CubeL4 architecture overview
	2.1 Level 0
	2.1.1 Board support package (BSP)
	2.1.2 Hardware abstraction layer (HAL) and Low Layer (LL)
	2.1.3 Basic peripheral usage examples

	2.2 Level 1
	2.2.1 Middleware components
	2.2.2 Examples based on the middleware components

	2.3 Level 2

	3 STM32CubeL4 firmware package overview
	3.1 Supported STM32L4 devices and hardware
	Table 1. Macros for STM32L4 Series
	Table 2. Boards for STM32L4 Series

	3.2 Firmware package overview
	Table 3. Number of examples available for each board

	4 Getting started with STM32CubeL4
	4.1 Running the first example
	4.2 Developing user application
	4.2.1 HAL application
	4.2.2 LL application

	4.3 Using STM32CubeMX to generate initialization C code
	4.4 Getting STM32CubeL4 release updates
	4.4.1 Installing and running the STM32CubeUpdater program

	4.5 STM32 Nucleo Power GUI tool

	5 FAQ
	5.1 What is the license scheme for the STM32CubeL4 firmware?
	5.2 What boards are supported by the STM32CubeL4 firmware package?
	5.3 Are any examples provided with the ready-to-use toolset projects?
	5.4 Is there any link with Standard Peripheral Libraries?
	5.5 Does the HAL drivers take benefit from interrupts or DMA? How can this be controlled?
	5.6 How are the product/peripheral specific features managed?
	5.7 How can STM32CubeMX generate code based on embedded software?
	5.8 How can I get regular updates on the latest STM32CubeL4 firmware releases?
	5.9 When should I use HAL versus LL drivers?
	5.10 How can I include LL drivers in my environment? Is there any LL configuration file as for HAL?
	5.11 Can I use HAL and LL drivers together? If yes, what are the constraints?
	5.12 Is there any LL APIs which are not available with HAL
	5.13 Why are SysTick interrupts not enabled on LL drivers?
	5.14 How are LL initialization APIs enabled?

	6 Revision history
	Table 4. Document revision history

