PM0214

Core peripherals

4.6

Floating point unit (FPU)

The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and
accumulate, and square root operations. It also provides conversions between fixed xxxxx-
point and floating-point data formats, and floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the
ANSI/IEEE standard 754-2008, IEEE standard for Binary Floating-Point Arithmetic, referred
to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which you can also access as 16
doubleword registers for load, store, and move operations.

Table 55 shows the floating-point system registers in the Cortex-M4F system control block
(SCB). The base address of the additional registers for the FP extension is 0OXE0O00 EDQQ.

Table 55. Cortex-M4F floating-point system registers

Address

Name | Type Reset Description

O0xEOOOED88

Section 4.6.1: Coprocessor access control register (CPACR) on

CPACR |RW |0x00000000
page 252

OxEOOOEF34

Section 4.6.2: Floating-point context control register (FPCCR)

FPCCR |RW |0xC0000000
on page 252

OxEOOOEF38

Section 4.6.3: Floating-point context address register (FPCAR)

FPCAR |RW |- on pege 554

OxEOOOEF3C |FPDSCR |[RW |0x00000000

Section 4.6.5: Floating-point default status control register
(FPDSCR) on page 256

Section 4.6.4: Floating-point status control register (FPSCR) on

FPSCR |RW |- page 254

Note:

)

The following sections describe the floating-point system registers whose implementation is
specific to this processor.

For more details on the IEEE standard and floating-point arithmetic (IEEE 754), refer to the
AN4044 Application note. Available from website www.st.com.

DocID022708 Rev 5 251/260

Core peripherals

PM0214

4.6.1 Coprocessor access control register (CPACR)

Address offset (from SCB): 0x88
Reset value: 0x0000000
Required privilege: Privileged

The CPACR register specifies the access privileges for coprocessors.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CP11 CP10
Reserved Reserved
w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved

Bits 31:24 Reserved. Read as Zero, Write Ignore.

Bits 23:20 CPn: [2n+1:2n] for n values 10 and 11. Access privileges for coprocessor n. The possible

values of each field are:

0b00: Access denied. Any attempted access generates a NOCP UsageFault.
0bO01: Privileged access only. An unprivileged access generates a NOCP fault.

0b10: Reserved. The result of any access is Unpredictable.
Ob11: Full access.

Bits 19:0 Reserved. Read as Zero, Write Ignore.

4.6.2 Floating-point context control register (FPCCR)
Address offset: 0x04
Reset value: 0xC000000
Required privilege: Privileged
The FPCCR register sets or returns FPU control data.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ASPEN | LSPEN
Reserved
w w
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
) - 5 2 - 3
i o) L o <
= > BFRDY o HFRDY o > USER £
Reserved [e] @ 2 T @ 7]
= | 3 = S -
o o
rw w w w w rw rw

252/260 DoclD022708 Rev 5

3

PM0214

Core peripherals

)

Bit 31

Bit 30

Bits 29:9
Bit 8

Bit 7
Bit 6

Bit 5

Bit 4

Bit 3

Bit 2
Bit 1

Bit 1

ASPEN: Enables CONTROL<2> setting on execution of a floating-point instruction. This
results in automatic hardware state preservation and restoration, for floating-point context, on
exception entry and exit.

0: Disable CONTROL<2> setting on execution of a floating-point instruction.
1: Enable CONTROL<2> setting on execution of a floating-point instruction.

LSPEN:
0: Disable automatic lazy state preservation for floating-point context.
1: Enable automatic lazy state preservation for floating-point context.

Reserved.

MONRDY:

0: DebugMonitor is disabled or priority did not permit setting MON_PEND when the floating-
point stack frame was allocated.

1: DebugMonitor is enabled and priority permits setting MON_PEND when the floating-point
stack frame was allocated.
Reserved.

BFRDY:

0: BusFault is disabled or priority did not permit setting the BusFault handler to the pending
state when the floating-point stack frame was allocated.

1: BusFault is enabled and priority permitted setting the BusFault handler to the pending state
when the floating-point stack frame was allocated.
MMRDY:

0: MemManage is disabled or priority did not permit setting the MemManage handler to the
pending state when the floating-point stack frame was allocated.

1: MemManage is enabled and priority permitted setting the MemManage handler to the
pending state when the floating-point stack frame was allocated.
HFRDY:

0: Priority did not permit setting the HardFault handler to the pending state when the floating-
point stack frame was allocated.

1: Priority permitted setting the HardFault handler to the pending state when the floating-point
stack frame was allocated.

THREAD:

0: Mode was not Thread Mode when the floating-point stack frame was allocated.

1: Mode was Thread Mode when the floating-point stack frame was allocated.

Reserved.

USER:
0: Privilege level was not user when the floating-point stack frame was allocated.
1: Privilege level was user when the floating-point stack frame was allocated.

LSPACT:
0: Lazy state preservation is not active.

1: Lazy state preservation is active. floating-point stack frame is allocated but saving state to it
is deferred.

DocID022708 Rev 5 253/260

Core peripherals PM0214

4.6.3 Floating-point context address register (FPCAR)

Address offset: 0x08
Reset value: 0x0000000
Required privilege: Privileged

The FPCAR register holds the location of the unpopulated floating-point register space
allocated on an exception stack frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ADDRESS[31:16]
rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDRESS[15:3]

Reserved

w

Bits 31:3 ADDRESS: Location of unpopulated floating-point register space allocated on an exception
stack frame.

Bits 2:0 Reserved. Read as Zero, Writes Ignored.

4.6.4 Floating-point status control register (FPSCR)
Address offset: Not mapped
Reset value: 0x0000000
Required privilege: Privileged

The FPSCR register provides all necessary user level control of the floating-point system.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
N 4 (¢} \Y Reserv| AHP DN Fz RMode
. Reserved
w w rw w w w rw w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDC IXC UFC OFC DzC 10C
Reserved Reserved
w w w rw rw rw

Bit 31 N: Negative condition code flag. Floating-point comparison operations update these flags. For
more details on the result, refer to Table 56.

0: Operation result was positive, zero, greater than, or equal.
1: Operation result was negative or less than.

Bit 30 Z: Zero condition code flag. Floating-point comparison operations update these flags. For more
details on the result, refer to Table 56.

0: Operation result was not zero.
1: Operation result was zero.

Bit 29 C: Carry condition code flag. Floating-point comparison operations update these flags. For more
details on the result, refer to Table 56.
0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit.
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

254/260 DoclD022708 Rev 5 ‘YI

PM0214

Core peripherals

)

Bit 28

Bit 27
Bit 26

Bit 25

Bit 24

Bits 23:22

Bit 21:8
Bit 7

Bit 6:5

Bit 4

Bit 3

Bit 2

Bit 1

Bit0

V: Overflow condition code flag. Floating-point comparison operations update this flag. For more
details on the result, refer to Table 56.

0: Operation did not result in an overflow
1: Operation resulted in an overflow.

Reserved.

AHP: Alternative half-precision control bit:
0: IEEE half-precision format selected.
1: Alternative half-precision format selected.

DN: Default NaN mode control bit:
0: NaN operands propagate through to the output of a floating-point operation.
1: Any operation involving one or more NaNs returns the Default NaN.

FZ: Flush-to-zero mode control bit:

0: Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the
IEEE 754 standard.

1: Flush-to-zero mode enabled.

RMode: Rounding Mode control field. The specified rounding mode is used by almost all
floating-point instructions:

0b00: Round to nearest (RN) mode

0b01: Round towards plus infinity (RP) mode

0b10: Round towards minus infinity (RM) mode

0b11: Round towards zero (RZ) mode.

Reserved.

IDC: Input denormal cumulative exception bit. Cumulative exception bit for floating-point
exception.
1: Indicates that the corresponding exception occurred since 0 was last written to it.

Reserved

IXC: Inexact cumulative exception bit. Cumulative exception bit for floating-point exception.
1: Indicates that the corresponding exception occurred since 0 was last written to it.

UFC: Underflow cumulative exception bit. Cumulative exception bit for floating-point exception.
1: Indicates that the corresponding exception occurred since 0 was last written to it.

OFC: Overflow cumulative exception bit. Cumulative exception bit for floating-point exception.
1: Indicates that the corresponding exception occurred since 0 was last written to it.

DZC: Division by zero cumulative exception bit. Cumulative exception bit for floating-point
exception. 1: Indicates that the corresponding exception occurred since 0 was last written to it.

I0C: Invalid operation cumulative exception bit. Cumulative exception bit for floating-point
exception. 1: Indicates that the corresponding exception occurred since 0 was last written to it.

Table 56. Effect of a Floating-point comparison on the condition flags

Comparison result N Zz C \'}

Equal 0 1 1 0

Less than 1 0 0 0

Greater than 0 0 1 0

Unordered 0 0 1 1
DocID022708 Rev 5 255/260

Core peripherals PM0214

4.6.5 Floating-point default status control register (FPDSCR)
Address offset: 0x0C
Reset value: 0x0000000
Required privilege: Privileged

The FPDSCR register holds the default values for the floating-point status control data.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AHP DN Fz RMode
Reserved Reserved
w w rw w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bits 31:27 Reserved, must be kept cleared.
Bit 26 AHP: Default value for FPSCR.AHP
Bit 25 DN: Default value for FFSCR.DN
Bit 24 FZ: Default value for FPSCR.FZ
Bits 23:22 RMode: Default value for FPSCR.RMode

Bits 21:0 Reserved, must be kept cleared.

4.6.6 Enabling the FPU

The FPU is disabled from reset. You must enable it before you can use any floating-point
instructions.

The example shows an example code sequence for enabling the FPU in both privileged and
user modes. The processor must be in privileged mode to read from and write to the
CPACR.

Example

; CPACR is located at address O0xE000ED88
LDR.W RO, =0xEO00EDS88

; Read CPACR
LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CPll coprocessors
ORR R1, R1, #(0xF << 20)

; Write back the modified value to the CPACR

STR R1, [RO]; wait for store to complete
DSB

;reset pipeline now the FPU is enabled

ISB

3

256/260 DoclD022708 Rev 5

PM0214

Core peripherals

4.6.7

Note:

)

Enabling and clearing FPU exception interrupts

The FPU exception flags are generating an interrupt through the interrupt controller. The
FPU interrupt is globally controlled through the interrupt controller.

A mask bit is also provided in the System Configuration Controller (SYSCFG), allowing to
enable/disable individually each FPU flag interrupt generation.

In STM32F4xx devices there is no individual mask and the enable/disable of the FPU
interrupts is done at interrupt controller level. As it occurs very frequently, the IXC exception
flag is not connected to the interrupt controller in these devices , and cannot generate an
interrupt. If needed, it must be managed by polling.

Clearing the FPU exception flags depends on the FPU context save/restore configuration:

No floating-point register saving: when Floating-point context control register (FPCCR)
Bit 30 LSPEN=0 and Bit 31 ASPEN=0.
You must clear interrupt source in Floating-point Status and Control Register (FPSCR).
Example:

register uint32_t fpscr_val = 0;

fpscr_val = _ _get_FPSCR();

{ check exception flags }

fpscr_val &= (uint32_t)~0x8F; // Clear all exception flags

_ _set_FPSCR(fpscr_val);
Lazy save/restore: when Floating-point context control register (FPCCR)
Bit 30 LSPEN=1 and Bit 31 ASPEN=X.
In the case of lazy floating-point context save/restore, a dummy read access should be
made to Floating-point Status and Control Register (FPSCR) to force state
preservation and FPSCR clear.
Then handle FPSCR in the stack.
Example:

register uint32_t fpscr_val = 0;

register uint32_t reg_val = 0;

reg_val = _ get_FPSCR(); //dummy access

fpscr_val=*(__I0 uint32_t*) (FPU->FPCAR +0x40) ;

{ check exception flags }

fpscr_val &= (uint32_t)~0x8F ; // Clear all exception flags

(__TI0 uint32_t) (FPU->FPCAR +0x40)=fpscr_val;

__DMB() ;
Automatic floating-point registers save/restore: when Floating-point context control
register (FPCCR)
Bit 30 LSPEN=0 and Bit 31 ASPEN=1.
In case of automatic floating-point context save/restore, a read access should be made
to Floating-point Status and Control Register (FPSCR) to force clear.
Then handle FPSCR in the stack.
Example:

// FPU Exception handler

void FPU_ExceptionHandler (uint32_t 1lr, uint32_t sp)

{

register uint32_t fpscr_val;

if (lr == OXFFFFFFE9)
{

DocID022708 Rev 5 257/260

Core peripherals

PM0214

258/260

Sp = sp + 0x60;
}

else if(lr == OxXFFFFFFED)
{
sp = __get_PSP() + 0x60 ;
}
fpscr_val = *(uint32_t*)sp;

{ check exception flags }

fpscr_val &= (uint32_t)~0x8F ; // Clear all exception flags
(uint32_t)sp = fpscr_val;
__DMB() ;

}

// FPU IRQ Handler

void __asm FPU_IRQHandler (void)
{

IMPORT FPU_ExceptionHandler

MOV RO, LR // move LR to RO

MOV R1, SP // Save SP to Rl to avoid any modification to
// the stack pointer from FPU_ExceptionHandler

VMRS R2, FPSCR // dummy read access, to force clear

B FPU_ExceptionHandler

BX LR

}

3

DocID022708 Rev 5

