4.4 System control block (SCB)

The *System control block* (SCB) provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions.

Table 49. Summary of the system control block registers

Address	Name	Туре	Required privilege	Reset value	Description
0xE000E008	ACTLR	RW	Privileged	0x00000000	Table 4.4.1: Auxiliary control register (ACTLR) on page 221
0xE000ED00	CPUID	RO	Privileged	0x410FC241	Table 4.4.2: CPUID base register (CPUID) on page 223
0xE000ED04	ICSR	RW ⁽¹⁾	Privileged	0x00000000	Table 4.4.3: Interrupt control and state register (ICSR) on page 224
0xE000ED08	VTOR	RW	Privileged	0x00000000	Table 4.4.4: Vector table offset register (VTOR) on page 226
0xE000ED0C	AIRCR	RW ⁽¹⁾	Privileged	0xFA050000	Table 4.4.5: Application interrupt and reset control register (AIRCR) on page 227
0xE000ED10	SCR	RW	Privileged	0x00000000	Table 4.4.6: System control register (SCR) on page 229
0xE000ED14	CCR	RW	Privileged	0x00000200	Table 4.4.7: Configuration and control register (CCR) on page 230
0xE000ED18	SHPR1	RW	Privileged	0x00000000	
0xE000ED1C	SHPR2	RW	Privileged	0x00000000	Table 4.4.8: System handler priority registers (SHPRx) on page 232
0xE000ED20	SHPR3	RW	Privileged	0x00000000	on page 202
0xE000ED24	SHCRS	RW	Privileged	0x00000000	Table 4.4.9: System handler control and state register (SHCSR) on page 234
0xE000ED28	CFSR	RW	Privileged	0x00000000	Table 4.4.10: Configurable fault status register (CFSR; UFSR+BFSR+MMFSR) on page 236
0xE000ED28	MMSR	RW	Privileged	0x00	MemManage Fault Status Register <i>Table 4.4.10 on page 236</i>
0xE000ED29	BFSR ⁽²⁾	RW	Privileged	0x00	BusFault Status Register Table 4.4.10 on page 236
0xE000ED2A	UFSR ⁽²⁾	RW	Privileged	0x0000	UsageFault Status Register Table 4.4.10 on page 236
0xE000ED2C	HFSR	RW	Privileged	0x00000000	Table 4.4.14: Hard fault status register (HFSR) on page 240
0xE000ED34	MMAR	RW	Privileged	Unknown	Table 4.4.15: Memory management fault address register (MMFAR) on page 241
0xE000ED38	BFAR	RW	Privileged	Unknown	Table 4.4.16: Bus fault address register (BFAR) on page 241
0xE000ED3C	AFSR	RW	Privileged	0x00000000	Table 4.4.17: Auxiliary fault status register (AFSR) on page 242

^{1.} See the register description for more information.

^{2.} A subregister of the CFSR

4.4.1 Auxiliary control register (ACTLR)

Address offset: 0x00 (base adress = 0xE000 E008)

Reset value: 0x0000 0000
Required privilege: Privileged

By default this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally require modification. The ACTLR register provides disable bits for the following processor functions:

IT folding

• write buffer use for accesses to the default memory map

• interruption of multi-cycle instructions.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			DISOO FP	DISFP CA						DISFOL D	DISDE FWBUF	DISMC YCINT
						rw	rw						rw	rw	rw

Bits 31:10 Reserved

Bit 9 DISOOFP

Disables floating point instructions completing out of order with respect to integer instructions.

Bit 8 DISFPCA

Disables automatic update of CONTROL.FPCA.

The value of this bit should be written as zero or preserved (SBZP).

Bit 7:3 Reserved

Bit 2 DISFOLD

Disables folding of IT instructions:

- 0: Enables IT instructions folding.
- 1: Disables IT instructions folding.

In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction. This behavior is called IT folding, and improves performance, However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable IT folding.

Bit 1 DISDEFWBUF

This bit only affects write buffers implemented in the Cortex-M4 processor.

Disables write buffer use during default memory map accesses: This causes all BusFaults to be precise BusFaults but decreases performance because any store to memory must complete before the processor can execute the next instruction.

- 0: Enable write buffer use
- 1: Disable write buffer use: Stores to memory is completed before next instruction.

Bit 0 DISMCYCINT

Disables interrupt of multi-cycle instructions. When set to 1, disables interruption of load multiple and store multiple instructions. This increases the interrupt latency of the processor because any LDM or STM must complete before the processor can stack the current state and enter the interrupt handler.

- 0: Enable interruption latency of the processor (load/store and multiply/divide operations).
- 1: Disable interruptions latency.

4.4.2 CPUID base register (CPUID)

Address offset: 0x00

Reset value: 0x410F C241 Required privilege: Privileged

The CPUID register contains the processor part number, version, and implementation

information.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Imple	menter					Var	iant			Con	stant	
r	r r r r r r					r	r	r	r	r	r	r	r	r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Pa	artNo							Rev	ision	
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:24 Implementer: Implementer code

0x41: ARM

Bits 23:20 Variant: Variant number

The r value in the rnpn product revision identifier

0x0: revision 0

Bits 19:16 Constant: Reads as 0xF

Bits 15:4 PartNo: Part number of the processor

0xC24: = Cortex-M4

Bits 3:0 Revision: Revision number

The p value in the rnpn product revision identifier, indicates patch release.

0x1: = patch 1

4.4.3 Interrupt control and state register (ICSR)

Address offset: 0x04

Reset value: 0x0000 0000
Required privilege: Privileged

The ICSR:

Provides:

A set-pending bit for the Non-Maskable Interrupt (NMI) exception

Set-pending and clear-pending bits for the PendSV and SysTick exceptions

Indicates:

The exception number of the exception being processed

Whether there are preempted active exceptions

The exception number of the highest priority pending exception

Whether any interrupts are pending.

Caution: When you write to the ICSR, the effect is unpredictable if you:

- Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
- Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
NMIPENDSET	Rese	erved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved		ISRPENDING		Reserved	I	VECT	FPENDING	G[6:4]
rw			rw	w	rw	w			r				r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\	/ECTPEN	IDING[3:	0]	RETOBASE	Res	erved				VEC	CTACTIVE	[8:0]			
r	r	r	r	r			rw rw rw rw rw rw rw rw								

Bit 31 NMIPENDSET: NMI set-pending bit.

Write:

0: No effect

1: Change NMI exception state to pending.

Read:

0: NMI exception is not pending

1: NMI exception is pending

Because NMI is the highest-priority exception, normally the processor enter the NMI exception handler as soon as it registers a write of 1 to this bit, and entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.

Bits 30:29 Reserved

Bit 28 PENDSVSET: PendSV set-pending bit.

Write:

- 0: No effect
- 1: Change PendSV exception state to pending.

Read:

- 0: PendSV exception is not pending
- 1: PendSV exception is pending

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

- Bit 27 PENDSVCLR: PendSV clear-pending bit. This bit is write-only. On a read, value is unknown.
 - 0: No effect
 - 1: Removes the pending state from the PendSV exception.
- Bit 26 PENDSTSET: SysTick exception set-pending bit.

Write:

- 0: No effect
- 1: Change SysTick exception state to pending

Read:

- 0: SysTick exception is not pending
- 1: SysTick exception is pending
- Bit 25 **PENDSTCLR:** SysTick exception clear-pending bit. Write-only. On a read, value is unknown.
 - 0: No effect
 - 1: Removes the pending state from the SysTick exception.
- Bit 24 Reserved, must be kept cleared.
- Bit 23 This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.
- Bit 22 ISRPENDING: Interrupt pending flag, excluding NMI and Faults.
 - 0: Interrupt not pending
 - 1: Interrupt pending
- Bits 21:19 Reserved, must be kept cleared.
- Bits 18:12 **VECTPENDING**: Pending vector. Indicates the exception number of the highest priority pending enabled exception.
 - 0: No pending exceptions
 - Other values: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register.

- Bit 11 **RETTOBASE:** Return to base level. Indicates whether there are preempted active exceptions:
 - 0: There are preempted active exceptions to execute
 - 1: There are no active exceptions, or the currently-executing exception is the only active exception.
- Bits 10:9 Reserved
- Bits 8:0 VECTACTIVE Active vector. Contains the active exception number:
 - 0: Thread mode
 - Other values: The exception number⁽¹⁾ of the currently active exception.

Note: Subtract 16 from this value to obtain CMSIS IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see Table 5 on page 21.

1. This is the same value as IPSR bits[8:0], see Interrupt program status register on page 21.

4.4.4 Vector table offset register (VTOR)

Address offset: 0x08

Reset value: 0x0000 0000
Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved							TBLOF	F[29:16]						
		rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		TE	BLOFF[15	5:9]							Reserved	i			
rw	rw	rw	rw	rw	rw	rw									

Bits 31:30 Reserved, must be kept cleared

Bits 29:9 TBLOFF: Vector table base offset field.

It contains bits [29:9] of the offset of the table base from memory address 0x00000000. When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. The minimum alignment is 128 words. Table alignment requirements mean that bits[8:0] of the table offset are always zero.

Bit 29 determines whether the vector table is in the code or SRAM memory region.

0: Code 1: SRAM

Note: Bit 29 is sometimes called the TBLBASE bit.

Bits 8:0 Reserved, must be kept cleared

4.4.5 Application interrupt and reset control register (AIRCR)

Address offset: 0x0C

Reset value: 0xFA05 0000 Required privilege: Privileged

The AIRCR provides priority grouping control for the exception model, endian status for data

accesses, and reset control of the system.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the

processor ignores the write.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					VEC.	TKEYSTA	T[15:0](re	ad)/ VEC	TKEY[15:	0](write)					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIANESS	14 13 12 11 10 9 8 Reserved PRIGROUP						Р			Reserved	I		SYS RESET REQ	VECT CLR ACTIVE	VECT RESET
r					rw	rw	rw						W	W	w

Bits 31:16 VECTKEYSTAT/ VECTKEY Register key

Reads as 0xFA05

On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.

Bit 15 ENDIANESS Data endianness bit

Reads as 0.

0: Little-endian

Bits 14:11 Reserved, must be kept cleared

Bits 10:8 PRIGROUP: Interrupt priority grouping field

This field determines the split of group priority from subpriority, see *Binary point on page 227*.

Bits 7:3 Reserved, must be kept cleared

Bit 2 SYSRESETREQ System reset request

This is intended to force a large system reset of all major components except for debug.

This bit reads as 0.

0: No system reset request

1: Asserts a signal to the outer system that requests a reset.

Bit 1 VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is unpredictable.

Bit 0 VECTRESET

Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is unpredictable.

Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt Priority Registers into separate *group priority* and *subpriority* fields. *Table 50* shows how the PRIGROUP value controls this split. If you implement fewer than 8 priority

bits you might require more explanation here, and want to remove invalid rows from the table, and modify the entries in the number of columns.

Table 50. Priority grouping

PRIGROUP	Interrupt	priority level value,	PRI_ <i>N</i> [7:4]	Numbe	er of
[2:0]	Binary point ⁽¹⁾	Group priority bits	Subpriority bits	Group priorities	Sub priorities
0b0xx	0bxxxx	[7:4]	None	16	None
0b100	0bxxx.y	[7:5]	[4]	8	2
0b101	0bxx.yy	[7:6]	[5:4]	4	4
0b110	0bx.yyy	[7]	[6:4]	2	8
0b111	0b.yyyy	None	[7:4]	None	16

PRI_n[7:4] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Determining preemption of an exception uses only the group priority field, see *Section 2.3.6: Interrupt priority grouping on page 40.*

4.4.6 System control register (SCR)

Address offset: 0x10

Reset value: 0x0000 0000
Required privilege: Privileged

The SCR controls features of entry to and exit from low power state.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	14 13 12 11 10 9 8 / 6 Reserved										SEVON PEND	Res.	SLEEP DEEP	SLEEP ON EXIT	Res.
											rw		rw	rw	

Bits 31:5 Reserved, must be kept cleared

Bit 4 SEVEONPEND Send Event on Pending bit

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event

- 0: Only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
- 1: Enabled events and all interrupts, including disabled interrupts, can wakeup the processor.
- Bit 3 Reserved, must be kept cleared

Bit 2 SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its low power mode:

- 0: Sleep
- 1: Deep sleep.

Bit 1 SLEEPONEXIT

Configures sleep-on-exit when returning from Handler mode to Thread mode. Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

- 0: Do not sleep when returning to Thread mode.
- 1: Enter sleep, or deep sleep, on return from an interrupt service routine.
- Bit 0 Reserved, must be kept cleared

4.4.7 Configuration and control register (CCR)

Address offset: 0x14

Reset value: 0x0000 0200 Required privilege: Privileged

The CCR controls entry to Thread mode and enables:

 The handlers for NMI, hard fault and faults escalated by FAULTMASK to ignore bus faults

• Trapping of divide by zero and unaligned accesses

 Access to the STIR by unprivileged software, see Software trigger interrupt register (NVIC_STIR) on page 215.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	5 14 13 12 11 1 Reserved					STK ALIGN	BFHF NMIGN		Reserved		DIV_0_ TRP	UN ALIGN_ TRP	Res.	USER SET MPEND	NON BASE THRD ENA
						rw	rw				rw	rw		rw	rw

Bits 31:10 Reserved, must be kept cleared

Bit 9 STKALIGN

Configures stack alignment on exception entry. On exception entry, the processor uses bit 9 of the stacked PSR to indicate the stack alignment. On return from the exception it uses this stacked bit to restore the correct stack alignment.

0: 4-byte aligned

1: 8-byte aligned

Bit 8 BFHFNMIGN

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the hard fault, NMI, and FAULTMASK escalated handlers. Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system devices and bridges to detect control path problems and fix them.

- 0: Data bus faults caused by load and store instructions cause a lock-up
- 1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Bits 7:5 Reserved, must be kept cleared

Bit 4 DIV_0_TRP

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0

1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

577

230/260 DocID022708 Rev 5

Bit 3 UNALIGN_TRP

Enables unaligned access traps:

- 0: Do not trap unaligned halfword and word accesses
- 1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

Bit 2 Reserved, must be kept cleared

Bit 1 USERSETMPEND

Enables unprivileged software access to the STIR, see *Software trigger interrupt register* (NVIC_STIR) on page 215:

- 0: Disable
- 1: Enable.

Bit 0 NONBASETHRDENA

Configures how the processor enters Thread mode.

- 0: Processor can enter Thread mode only when no exception is active.
- 1: Processor can enter Thread mode from any level under the control of an EXC_RETURN value, see *Exception return on page 43*.

4.4.8 System handler priority registers (SHPRx)

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have configurable priority.

SHPR1-SHPR3 are byte accessible.

The system fault handlers and the priority field and register for each handler are:

Table 51. System fault handler priority fields

Handler	Field	Register description
Memory management fault	PRI_4	
Bus fault	PRI_5	System handler priority register 1 (SHPR1)
Usage fault	PRI_6	
SVCall	PRI_11	System handler priority register 2 (SHPR2) on page 232
PendSV	PRI_14	System handler priority register 3 (SHPR3) on
SysTick	PRI_15	page 233

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:3] of each field, and bits[3:0] read as zero and ignore writes (where M=4).

System handler priority register 1 (SHPR1)

Address offset: 0x18

Reset value: 0x0000 0000
Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved					PRI_	6[7:4]			PRI_	6[3:0]	
			пез	erveu				rw	rw	rw	rw	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PRI_5[7:4] PRI_5[3:0]								PRI_	4[7:4]			PRI_	4[7:4]	
rw	rw	rw	rw	r	r	r	r	rw	rw	rw	rw	r	r	r	r

Bits 31:24 Reserved, must be kept cleared

Bits 23:16 PRI_6: Priority of system handler 6, usage fault

Bits 15:8 PRI 5: Priority of system handler 5, bus fault

Bits 7:0 PRI_4: Priority of system handler 4, memory management fault

System handler priority register 2 (SHPR2)

Address offset: 0x1C

Reset value: 0x0000 0000
Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PRI_1	11[7:4]			PRI_	11[3:0]		Reserved							
rw	rw	rw	rw	r	r	r	r				nese	erveu			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved														

Bits 31:24 PRI_11: Priority of system handler 11, SVCall

Bits 23:0 Reserved, must be kept cleared

System handler priority register 3 (SHPR3)

Address: 0xE000 ED20
Reset value: 0x0000 0000
Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PRI_1	15[7:4]	_		PRI_	15[3:0]			PRI_1	4[7:4]	_		PRI_1	4[3:0]	
rw	rw	rw	rw	r	r	r	r	rw	rw	rw	rw	r	r	r	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Res	served							

Bits 31:24 PRI_15: Priority of system handler 15, SysTick exception

Bits 23:16 PRI_14: Priority of system handler 14, PendSV

Bits 15:0 Reserved, must be kept cleared

4.4.9 System handler control and state register (SHCSR)

Address offset: 0x24

Reset value: 0x0000 0000
Required privilege: Privileged

The SHCSR enables the system handlers, and indicates:

The pending status of the bus fault, memory management fault, and SVC exceptions

The active status of the system handlers.

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the active bits to perform a context switch that changes the current exception type.

- Software that changes the value of an active bit in this register without correct
 adjustment to the stacked content can cause the processor to generate a fault
 exception. Ensure software that writes to this register retains and subsequently
 restores the current active status.
- After you have enabled the system handlers, if you have to change the value of a bit in this register you must use a read-modify-write procedure to ensure that you change only the required bit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserve	ed						USG FAULT ENA	BUS FAULT ENA	MEM FAULT ENA
													rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SV CALL PEND ED	BUS FAULT PEND ED	MEM FAULT PEND ED	USG FAULT PEND ED	SYS TICK ACT	PEND SV ACT	Res.	MONIT OR ACT	SV CALL ACT		Reserved		USG FAULT ACT	Res.	BUS FAULT ACT	MEM FAULT ACT
rw	rw	rw	rw	rw	rw		rw	rw				rw		rw	rw

Bits 31:19 Reserved, must be kept cleared

Bit 18 **USGFAULTENA:** Usage fault enable bit, set to 1 to enable (1)

Bit 17 **BUSFAULTENA**: Bus fault enable bit, set to 1 to enable (1)

Bit 16 **MEMFAULTENA**: Memory management fault enable bit, set to 1 to enable (1)

Bit 15 **SVCALLPENDED:** SVC call pending bit, reads as 1 if exception is pending (2)

Bit 14 BUSFAULTPENDED: Bus fault exception pending bit, reads as 1 if exception is pending (2)

Bit 13 **MEMFAULTPENDED:** Memory management fault exception pending bit, reads as 1 if exception is pending (2)

Bit 12 **USGFAULTPENDED:** Usage fault exception pending bit, reads as 1 if exception is pending (2)

Bit 11 SYSTICKACT: SysTick exception active bit, reads as 1 if exception is active (3)

Bit 10 PENDSVACT: PendSV exception active bit, reads as 1 if exception is active

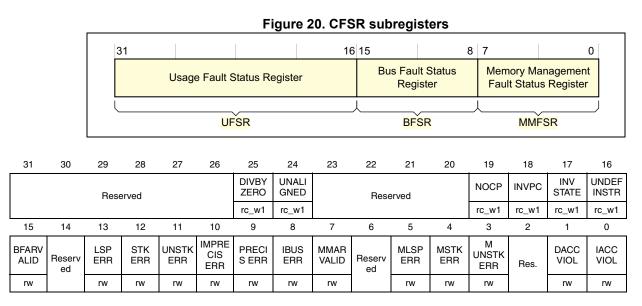
Bit 9 Reserved, must be kept cleared

- Bit 8 MONITORACT: Debug monitor active bit, reads as 1 if Debug monitor is active
- Bit 7 SVCALLACT: SVC call active bit, reads as 1 if SVC call is active
- Bits 6:4 Reserved, must be kept cleared
 - Bit 3 USGFAULTACT: Usage fault exception active bit, reads as 1 if exception is active
 - Bit 2 Reserved, must be kept cleared
 - Bit 1 BUSFAULTACT: Bus fault exception active bit, reads as 1 if exception is active
 - Bit 0 **MEMFAULTACT:** Memory management fault exception active bit, reads as 1 if exception is active
- 1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.
- 2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending status of the exceptions.
- 3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of the exceptions, but see the Caution in this section.

4.4.10 Configurable fault status register (CFSR; UFSR+BFSR+MMFSR)

Address offset: 0x28

Reset value: 0x0000 0000 Required privilege: Privileged


The following subsections describe the subregisters that make up the CFSR:

- Usage fault status register (UFSR) on page 237
- Bus fault status register (BFSR) on page 238
- Memory management fault address register (MMFSR) on page 239

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:

- Access the complete CFSR with a word access to 0xE000ED28
- Access the MMFSR with a byte access to 0xE000ED28
- Access the MMFSR and BFSR with a halfword access to 0xE000ED28
- Access the BFSR with a byte access to 0xE000ED29
- Access the UFSR with a halfword access to 0xE000ED2A.

The CFSR indicates the cause of a memory management fault, bus fault, or usage fault.

Bits 31:16 UFSR: see Usage fault status register (UFSR) on page 237

Bits 15:8 BFSR: see Bus fault status register (BFSR) on page 238

Bits 7:0 MMFSR: see Memory management fault address register (MMFSR) on page 239

236/260 DocID022708 Rev 5

4.4.11 Usage fault status register (UFSR)

- Bits 31:26 Reserved, must be kept cleared
 - Bit 25 **DIVBYZERO:** Divide by zero usage fault. When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see *Configuration and control register (CCR) on page 230.*
 - 0: No divide by zero fault, or divide by zero trapping not enabled
 - 1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.
 - Bit 24 **UNALIGNED:** Unaligned access usage fault. Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to 1, see *Configuration and control register (CCR) on page 230.*

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN TRP.

- 0: No unaligned access fault, or unaligned access trapping not enabled
- 1: the processor has made an unaligned memory access.
- Bits 23:20 Reserved, must be kept cleared
 - Bit 19 NOCP: No coprocessor usage fault. The processor does not support coprocessor instructions:
 - 0: No usage fault caused by attempting to access a coprocessor
 - 1: the processor has attempted to access a coprocessor.
 - Bit 18 INVPC: Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load of the PC.

- 0: No invalid PC load usage fault
- 1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid EXC_RETURN value.
- Bit 17 **INVSTATE:** Invalid state usage fault. When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

- 0: No invalid state usage fault
- 1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.
- Bit 16 **UNDEFINSTR:** Undefined instruction usage fault. When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

- 0: No undefined instruction usage fault
- 1: The processor has attempted to execute an undefined instruction.

4.4.12 Bus fault status register (BFSR)

Bit 15 **BFARVALID:** Bus Fault Address Register (BFAR) valid flag. The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This prevents problems if returning to a stacked active bus fault handler whose BFAR value is overwritten.

- 0: Value in BFAR is not a valid fault address
- 1: BFAR holds a valid fault address.
- Bit 14 Reserved, must be kept cleared
- Bit 13 **LSPERR**: Bus fault on floating-point lazy state preservation.
 - 0: No bus fault occurred during floating-point lazy state preservation.
 - 1: A bus fault occurred during floating-point lazy state preservation
- Bit 12 **STKERR:** Bus fault on stacking for exception entry. When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor does not write a fault address to the BFAR.
 - 0: No stacking fault
 - 1: Stacking for an exception entry has caused one or more bus faults.
- Bit 11 **UNSTKERR:** Bus fault on unstacking for a return from exception. This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write a fault address to the BFAR.
 - 0: No unstacking fault
 - 1: Unstack for an exception return has caused one or more bus faults.
- Bit 10 **IMPRECISERR:** Imprecise data bus error. When the processor sets this bit to 1, it does not write a fault address to the BFAR. This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority processes. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects both IMPRECISERR set to 1 and one of the precise fault status bits set to 1.
 - 0: No imprecise data bus error
 - 1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error.
- Bit 9 **PRECISERR:** Precise data bus error. When the processor sets this bit is 1, it writes the faulting address to the BFAR.
 - 0: No precise data bus error
 - 1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault.
- Bit 8 **IBUSERR:** Instruction bus error. The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

- 0: No instruction bus error
- 1: Instruction bus error.

57

4.4.13 Memory management fault address register (MMFSR)

- Bit 7 **MMARVALID:** Memory Management Fault Address Register (MMAR) valid flag. If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose MMAR value is overwritten.
 - 0: Value in MMAR is not a valid fault address
 - 1: MMAR holds a valid fault address.
- Bit 6 Reserved, must be kept cleared
- Bit 5 MLSPERR:
 - 0: No MemManage fault occurred during floating-point lazy state preservation
 - 1: A MemManage fault occurred during floating-point lazy state preservation
- Bit 4 **MSTKERR:** Memory manager fault on stacking for exception entry. When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has not written a fault address to the MMAR.
 - 0: No stacking fault
 - 1: Stacking for an exception entry has caused one or more access violations.
- Bit 3 **MUNSTKERR:** Memory manager fault on unstacking for a return from exception. This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault address to the MMAR.
 - 0: No unstacking fault
 - 1: Unstack for an exception return has caused one or more access violations.
- Bit 2 Reserved, must be kept cleared
- Bit 1 **DACCVIOL:** Data access violation flag. When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the MMAR with the address of the attempted access.
 - 0: No data access violation fault
 - 1: The processor attempted a load or store at a location that does not permit the operation.
- Bit 1 **IACCVIOL:** Instruction access violation flag. This fault occurs on any access to an XN region, even the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written a fault address to the MMAR.

- 0: No instruction access violation fault
- 1: The processor attempted an instruction fetch from a location that does not permit execution.

4.4.14 Hard fault status register (HFSR)

Address offset: 0x2C

Reset value: 0x0000 0000
Required privilege: Privileged

The HFSR gives information about events that activate the hard fault handler. This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears that bit to 0.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DEBU G_VT	FORC ED							Res	erved						
rc_w1	rc_w1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Res	served							VECT TBL	Res.
														rc_w1	

- Bit 31 DEBUG_VT: Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is unpredictable.
- Bit 30 FORCED: Forced hard fault. Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either because of priority or because it is disabled.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

- 0: No forced hard fault
- 1: Forced hard fault.
- Bits 29:2 Reserved, must be kept cleared
 - Bit 1 VECTTBL: Vector table hard fault. Indicates a bus fault on a vector table read during exception processing. This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the exception.

- 0: No bus fault on vector table read
- 1: Bus fault on vector table read.
- Bit 0 Reserved, must be kept cleared

240/260 DocID022708 Rev 5

4.4.15 Memory management fault address register (MMFAR)

Address offset: 0x34 Reset value: undefined

Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MMFA	AR[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_						MMF	AR[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:0 MMFAR: Memory management fault address

When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated the memory management fault.

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

Flags in the MMFSR register indicate the cause of the fault, and whether the value in the MMFAR is valid. See *Configurable fault status register (CFSR; UFSR+BFSR+MMFSR)* on page 236.

4.4.16 Bus fault address register (BFAR)

Address offset: 0x38

Reset value: undefined

Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							BFAF	R[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BFA	R[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:0 BFAR: Bus fault address

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the bus fault.

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the address of the fault.

Flags in the BFSR register indicate the cause of the fault, and whether the value in the BFAR is valid. See *Configurable fault status register (CFSR; UFSR+BFSR+MMFSR)* on page 236.

4.4.17 Auxiliary fault status register (AFSR)

Address offset: 0x3C Reset value: undefined

Required privilege: Privileged

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IMPDI	EF[31:16]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							IMPD	EF[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

Bits 31:0 **IMPDEF**: Implementation defined. The AFSR contains additional system fault information. The bits map to the AUXFAULT input signals.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears that bit to 0.

Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle HIGH signal on the input sets the corresponding AFSR bit to one. It remains set to 1 until you write 1 to the bit to clear it to zero.

When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is required.

4.4.18 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block registers:

- except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses
- for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

- 1. Read and save the MMFAR or BFAR value.
- 2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR or BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the MMFAR or BFAR value.

242/260 DocID022708 Rev 5

4.4.19 SCB register map

The table provides shows the System control block register map and reset values. The base address of the SCB register block is 0xE000 ED00 for register described in *Table 52*.

Table 52. SCB register map and reset values

Offset	Register	31	30	29	28	27	26	25	24	23	c	7 7	200	0,	9 6	0	17	0	15	14	13	12	11	10	6	0	7		2	4	က	2	_	0
0x00	CPUID			Imp	ler	ner	ntei	٢		'	√a	riar	nt	(Cor	nst	ant						F	ar	tNo)					R	evi	sio	n
UXUU	Reset Value	0	1	0	0	0	0	0	1	0	0	0	1	1	1 1		1 1		1	1	0	0	0	0	1	0	0	0	1	1	0	0	0	1
0x04	ICSR	NMIPENDSET		Keserved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR		Keserved	CINICINITION	ISKPENDING	٧	/E	СТІ	PE	:ND	IN	1G[9:0	0]		RETOBASE	Desprised	200		VI	EC	TA	СТІ	VE	[8:	0]	
	Reset Value	0			0	0	0	0			0	0	0	(0 0) (0 0)	0	0	0	0	0			0	0	0	0	0	0	0	0	0
	VTOR	þ.	5								-	TAE	BLE	ΞΟ	FF	29	9:9]										ı				I	1		
0x08	Reset Value	Reserved		0	0	0	0	0	0	0	0	0	0	(0) (0 0)	0	0	0	0	0	0	0				Res	ser	/ed			
0x0C	AIRCR						VE	EC1	ГК	EΥ	[1	5:0]				•			ENDIANESS	Re	ese	rve	ed		PRIGROUP[2:0]			Re	ser	vec	I	SYSRESETREQ	VECTCLRACTIVE	VECTRESET
	Reset Value	1	1	1	1	1	0	1	0	0	0	0	0	() 1	(0 1		0					0	0	0	_				-	0	0	0
0x10	SCR													Re	ese	rve	ed													SEVONPEND	Reserved	SLEEPDEEP	SLEEPONEXIT	Reserved
	Reset Value																													0		0	0	
0x14	CCR										F	Res	erw	/ec	d										STKALIGN	BEHENIGN		Reserved		DIV 0 TRP	UNALIGN TRP	Reserved	USERSETMPEND	NONBASETHRDENA
	Reset Value									T															1	0				0	0		0	0
0x18	SHPR1 Reset Value			Re	ese	erve	ed			0	0	0	P 0	RI) (0 0)	0	0	0	PF 0	RI5 0	0	0	0	0	0	0	PF 0	0	0	0	0

Table 52. SCB register map and reset values (continued)

Offset	Register	31	30	29	28	27	25	24	23	22	21	200	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
0x1C	SHPR2			Р	R	l11													D	000	rve	٠,										
OXIC	Reset Value	0	0	0 ()	0 0	0	0											T.C	:50	IVE	: u										
0x20	SHPR3			Р	RI	115						PF	RI14	1									D	ese	r\/a	ad.						
0,20	Reset Value	0	0	0 ()	0 0	0	0	0	0	0	0	0	0	0	0							170	-56	1 V C	. u						
0x24	SHCRS					Re	ser	ve	d					USG FAULT ENA	BUS FAULT ENA	MEM FAULT ENA	SV CALL PENDED	BUS FAULT PENDED	MEM FAULT PENDED	USG FAULT PENDED	SYS TICK ACT	PENDSV ACT	Reserved	MONITOR ACT	SV CALL ACT		Reserved		USG FAULT ACT	Reserved	BUS FAULT ACT	MEM FAULT ACT
	Reset Value													0	0	0	0	0	0	0	0	0		0	0				0		0	0
0x28	CFSR							UF	SF	2									E	3FS	SR						N	1MI	FSI	R		
0,20	Reset Value	0	0	0)	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x2C	HFSR	DEBUG VT	FORCE	i.											Re	ese	erve	ed													VECTTBL	Reserved
	Reset Value	0	0																												0	
0x34	MMAR						,	,						1	ИМ	AF	R[31	[0:1]				,					,				
0,101	Reset Value	Х	х	X Z	(x x	Х	Х	х	х	х	х	X	х	Χ	X	x	Х	Х	Х	Х	х	Х	х	Х	Х	X	х	X	X	Х	х
0x38	BFAR						-			,	1	,		,	BF	AR	[31	:0]		,												
0,,00	Reset Value	Х	х	X Z	(x x	Х	х	х	х	х	х	X	Х	X	X	х	Х	х	Х	X	х	Х	x	Х	х	X	Х	X	X	х	х
0x3C	AFSR						,		1	,	1			IN	ΛΡΙ	DE	F[3	1:0)]													
0,00	Reset Value	х	X	x 2	<	x x	х	х	Х	х	X	X	X	х	X	X	X	X	X	X	X	X	X	X	Х	х	X	X	X	X	х	X