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> After his bachelor’s degree in marketing Mr. Maier took over a
respectable cheese dairy in Bavaria

> Regularly he does marketing focused on distinct towns
> He uses the phone, e-mail, mail and small gifts for his key
customers
> And he collected data about his spendings per marketing
action and his revenues for 30 days after the action took
place 5
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Getting to know
RStudio

> Code
» Console

> Workspace
> History

> Files

> Plots

> Packages

>

Help

Fle fot Code View P Workpace Plots Toos Hep
o2 BB S~

5 pojec piene) =

) amondricngx | O omaltotx | ] damonds x =

®  Flsource on sm Q Z- oo e [Hsoune +| £
THbrary (ggplor =
source(" D‘ots/furmn(ﬂot R")

1
2

3

4 view(diamonds)

5 sumary(dianonds)
6
7
5
s

summary (dianonds sprice)
avesize < round (mean(dianondsicarat), 4)
Clarity < Tevels(dianondssclarity)

10
b < apleticarac, pri

12 dIalnnds. Sty
13 X rice”,
13 e Eianond B icing

15

Rsaipt *
=0
0.000 g
4.720
5.710
5.735
540
58.900
wean 3rd Qu.  Max.
5324 18520
7 ayestae < roundGeanGtaondsscarst), 4)
S Clarity < Tevels(dianondssclar
> p < aploc(carar, price,
+ TR SHamend Hicing’s
> format.plot(p, size-24) El
-1 &

Workspace History =0
oaa | [ Swer | importDataset= o Clear Al [c]
Dot

dianonds 53040 obs. of 10 variables ]
avesize 0.7079

larity character (8]

3 ggploc(s]

format. plot(plor, size)

Fies Plots Packooes Help =0
@ | 2o | Sepot- @ S Claral @

Diamond Pricing

Price

Data analysis,
Regression and

Beyond
Stefan Etschberger

Introduction

R and RStudio
What is R?

What is RStudio?
First steps.

Simple linear
regression

Multicollinearity

Supplementary sl



Getting to know

RStudio

Code
Console
Workspace
History
Files
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Help
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Getting to know
RStudio

> Code

» Console

> Workspace

> History

> Files
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> Packages
> Help

> Auto-
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Data analysis,
Regression and

# read in data from comma-seperated list
MyCheeseData = read.csv(file="Cheese.csv", header=TRUE)
# show first few lines of data matrix

Beyond
Stefan Etschberger

head(MyCheeseData)

Introduction
## phone gift email mail revenue R and RStudio
## 1 29.36 146.1 10.32 13.36 3138 What is R?
## 2 8.75 125.8 11.27 14.72 3728 What s Rétudio?
## 3 36.15 124.5 8.45 17.72 3085 GIEISEES
## 4 51.20 129.4 10.27 39.59 4668 Simple linear
## 5 51.36 163.4 8.19 7.57 2286 regression
## 6 34.65 110.0 7.89 21.68 4148 Multicollinearity

Supplementary slides
# make MyCheeseData the default dataset
attach(MyCheeseData)
# how many customer data objects do we have?
length(revenue)

## [1] 80

# mean, median and standard deviation of revenue

data.frame(mean=mean(revenue),
median=median(revenue),
sd=sd(revenue))

##  mean median sd
## 1 3075 3086 903.4
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Beyond
Stefan Etschberger

Overview over all variables

Introduction

R and RStudio
summary (MyCheeseData)

What is R?

What is RStudio?
## phone gift email First steps
## Min. : 0.09 Min. :32.9 Min. 0.11 Simple linear
## 1st Qu.:19.41 Tst Qu.: 92.1 1st Qu.: 6.62 regression
## Median :32.16 Median :112.4 Median : 8.48 Multicollinearity
## Mean  :32.72 Mean :114.7 Mean 8.40 .
## 3rd Qu.:48.23 3rd Qu.:134.2  3rd Qu.:10.43 ST A
## Max. :73.59  Max. :183.4  Max. :16.93
i mail revenue
## Min. : 1.82  Min. : 831

## 1st Qu.:12.68 1st Qu.:2326
## Median :19.89 Median :3086
## Mean :19.60 Mean :3075
## 3rd Qu.:25.55  3rd Qu.:3671
## Max. 147.47  Max. 14740



Boxplots

names=names (MyCheeseData)

for(i in 1:5) {
boxplot(MyCheeseDatal,i], col="lightblue”, lwd=3,

3

a0

20

main=names[i], cex=1)

phone gift email mail revenue
- - ° 8 -
' ' _ '
' ' ' 1 - s '
' 24 ' ' ' g '
' - ' ' '
' '
q ' s
g
8
' '
' : % '
' ' ' i T '
' ' ' '
8 1
' ' ' '
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Visualize pairs

plot(MyCheeseData, pch=19, col="#8090ADa0")

revenue

T T T T
1000 2000 3000 4000

1000

Data analysis,
Regression and

Beyond
Stefan Etschberger

41k

Introduction

R and RStudio
What is R?
What is RStudio?
First steps.

Simple linear
regression

Multicollinearity

Supplementary slides



Data analysis,
Regression and

Beyond
Stefan Etschberger

Introduction

R and RStudio

List all Correlations (s
What is RStudio?
First steps
cor.MyCheeseData = cor(MyCheeseData)
Simple linear
cor.MyCheeseData S

. . . Multicollinearity
## phone gift email mail revenue

## phone 1.00000 0.1863 -0.5230 0.09869 -0.2273 Sy s
## gift 0.18630 1.0000 0.5682 -0.11034 0.3220
## email  -0.52299 0.5682 1.0000 0.36645 0.7408
## mail 0.09869 -0.1103 0.3665 1.00000 0.6508
## revenue -0.22732 0.3220 0.7408 0.65076 1.0000

oo o -—o



Visualize correlation

require(corrplot)
corrplot(cor.MyCheeseData)
corrplot(cor.MyCheeseData, method="number”, order

phone

gitt

="AOE", tl.pos=

email

-02

revenue

0.4

-06

0.8

d", type="upper")

phone -0.52
gift 057

revenue 074 065
email

mail
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9 Revision: Simple linear regression

Punkte  Modell

9 Multicollinearity in Regression

e Revision: Simple linear regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R“ is not perfect!
Residual analysis
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Premier German Soccer
League 2008/2009

> Given: data for all 18
clubs in the German
Premier Soccer Sl
League in the season .

Example set of data

2008/09 Trend as a linear model

Least squares

Introduction

R and RStudio

Best solution

Variance and information
Coefficient of determination
R2 is not perfect!

Residual analysis

Multicollinearity

Supplementary slides



Premier German Soccer
League 2008/2009

> Given: data for all 18
clubs in the German
Premier Soccer
League in the season
2008/09

> variables: Budget for
season (only direct
salaries for players)
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Example set of data
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Premier German Soccer
League 2008/2009

> Given: data for all 18
clubs in the German
Premier Soccer
League in the season
2008/09

> variables: Budget for
season (only direct
salaries for players)

> and: resulting table

points at the end of
the season
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Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
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Data

Premier German Soccer
League 2008/2009

> Given: data for all 18
clubs in the German
Premier Soccer
League in the season
2008/09

> variables: Budget for
season (only direct
salaries for players)

> and: resulting table
points at the end of
the season

Etat  Punkte
FC Bayern 80 67
VfL Wolfsburg 60 69
SV Werder Bremen 48 45
FC Schalke 04 48 50
VfB Stuttgart 38 64
Hamburger SV 35 61
Bayer 04 Leverkusen 35 49
Bor. Dortmund 32 59
Hertha BSC Berlin 31 63
1. FC KoIn 28 39
Bor. Monchengladbach 27 31
TSG Hoffenheim 26 55
Eintracht Frankfurt 25 33
Hannover 96 24 40
Energie Cottbus 23 30
VfL Bochum 17 32
Karlsruher SC 17 29
Arminia Bielefeld 15 28

(Source: Welt)

Data analysis,
Regression and

Beyond
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5

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R? is not perfect!

Residual analysis
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30
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Bundesliga 2008/09 5 .
o ViL Wolfsburg _— e
° FC Bayem Introduction
o VfB Stuttgart i
e Hertha BSC E!erling R and RStudio
e Hamburger SV Simple linear

regression
Example set of data

Trend as a linear model

* Bor. Dortmund

e TSG Hoffenheim Least squares

Best solution

Variance and information
e Bayer 04 Lever.ku';fe:nSChalke 04 Coefficient of determination
R2 is not perfect!

Residual analysis
e SV Werder Bremen

Multicollinearity

Supplementary slides
e Hannover 96
e 1. FCKaéln

® Eintracht Frankfurt
e ViL Bochum
e Bor. Ménchengladbach
o Energie Cottbus
e Karlsruher S
e Arminia Bielefeld

T T T T
20 40 60 80

Etat [Mio. Euro] 19
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Bundesliga 2008/09

40 60

Etat [Mio. Euro]
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Example set of data
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> Is it possible to find a simple function which can describe the

dependency of the end-of-season-points versus the club
budget?

Introduction
R and RStudio

Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R2 is not perfect!
Residual analysis

Multicollinearity

Supplementary slides
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Data analysis,
Regression and

> Is it possible to find a simple function which can describe the
dependency of the end-of-season-points versus the club

budget?

> In general: Description of a variable Y as a function of

another variable X:

> Notation:

® X:independent variable
® Y dependent variable

y = f(x)

Beyond
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Introduction
R and RStudio

Simple linear
regression

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R2 is not perfect!

Residual analysis

Multicollinearity
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> Is it possible to find a simple function which can describe the
dependency of the end-of-season-points versus the club
budget?

> In general: Description of a variable Y as a function of
another variable X:

y =f(x)
> Notation:

® X:independent variable
® Y dependent variable

> Important and easiest special case: f represents a linear trend:

y=a-+bx

> To estimate using the data: a (intercept) and b (slope)
> Estimation of a and b is called: Simple linear regression

Data analysis,
Regression and

Beyond
Stefan Etschberger

Introduction
R and RStudio

Simple linear
regression

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R2

Residual analysis

is not perfect!

Multicollinearity

Supplementary slides
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> using the regression model; per data object:
Yi=a+bxi+ €

> ¢; is error (regarding the population),

> with e; = y; — (a + bx;): deviation (residual) of given data of
the sample und estimated values

Data analysis,
Regression and

Beyond
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Introduction
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Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R2 is not perfect!
Residual analysis

Multicollinearity

Supplementary slides
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> using the regression model; per data object:

Yi=a+bxi+ e R
Introduction
> ¢; is error (regarding the population), R and Rstudio
> with e; = y; — (@ + bx;): deviation (residual) of given data of 070"
the sample und estimated values pmpleseof o |
» model works well if all residuals e; are together as small as S
pOSSi ble Variance and information

Coefficient of determination
R2 is not perfect!
Residual analysis

Multicollinearity

Supplementary slides
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Data analysis,

Sum Of error Sq uares Regression and

Beyond
Stefan Etschberger
> using the regression model; per data object:
Yi=a+bxi+ €
> ¢, is error (regarding the population),

> withe; =y; — (A + Bxi): deviation (residual) of given data of

Example set of data

the sample und estimated values Damplese ot
» model works well if all residuals e; are together as small as e
pOSSi ble Variance and information
Coefficient of determination

R? is not perfect!

> But just summing them up does not work, because e; are
positive and negative

Residual analysis

» Hence: Sum of squares of e;

» Ordinary Least squares (OLS): Choose a and b in such a way,
that

Q(a,b) = ) [yi — (a+bx;)]* — min
i=1

21



» Best and unique solution:

CEGAUSS %1777 +1855 8

n
D (xi—%)?
=
n
Z X{Yi —Nxy
i=1
n
inz nx?
i=1

o>
I
«<
|
(o)
bl

> regression line:

0 —aFbx

Data analysis,
Regression and
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regression

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R2 s not perfect!
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Multicollinearity
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> Calculation of the

soccer model

> With: table

points =y and
budget =x:

Data analysis,
Regression and

Beyond
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Introduction
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Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R2 s not perfect!
Residual analysis
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> Calculation of the

soccer model

> With: table

points =y and
budget =x:

Data analysis,
Regression and

Beyond
Stefan Etschberger

Introduction
R and RStudio

Simple linear

regression

Example set of data

i 33 ’83 Trend as a linear model

Least squares

g 46, 89 Best solution

Variance and information

Z XiZ 25209 Coefficient of determination

R2 s not perfect!
Z XiYi 31474 Residual analysis
Multicollinearity
n 18

Supplementary slides
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Data analysis,
Regression and

Beyond
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> Calculation of the t
soccer model 0 ¥

> With: table !

) N Introduction
points =y and R and Rstudio
budget =x: Simple linear

regression
Example set of data
X 33.83 Trend as a linear model
’ Least squares
g 46,89 Best solution

Variance and information
S x} 25209

Coefficient of determination

R2 s not perfect!
Z XiYi 31474

Residual analysis

Multicollinearity
n 18

Supplementary slides
31474 —18 - 33,83 - 46,89
25209 — 18- 33,832
~ 0,634
= a=4689—b-33,83
~ 25,443

=b=

23
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> Calculation of the > model: ) = 25,443 + 0,634 - x IE t
soccer model . 5.' —
> With: table g

Introduction

points =y and
budget =x:

R and RStudio

R q q
~ Simple linear
regression
Example set of data
X 33,83 3 - Trend as a linear model

Least squares

] 46,89 o

ariance and information
Z Xiz 25209 B Colefﬁclent of determination
R? is not perfect!

Z XiYi 31474 Residual analysis

Multicollinearity
o
n 18 ¥

50

Supplementary slides

31474 — 18 - 33,83 - 46,89
25209 — 18 - 33,832 ;
~ o 63 4 20 30 40 50 60 70 80
~ Yy
= a=4689—b-33,83
~ 25,443

30
L

=b=
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Data analysis,
Regression and
Beyond
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> Calculation of the > model: § = 25,443 + 0,634 - x IIL
soccer model : f ¥
> Wlth: table &7 Introduction
points =y and R and Rstudio
budget =x: S Simple linear
regression
Example set of data
X 33,83 g | Trend as a linear model
U 46,89 Bes.(solullo:- —
Z Xiz 25209 g 4 Colefﬁcien( of determination
R is not perfect!
Z XiUi 31474 Residual analysis
s | Multicollinearity
n 18 N Supplementary slides
~h— 31474 — 18 - 33,83 - 46,89 8
25209 — 18 - 33,832 —
~ o 634 20 30 40 50 60 70 80
~ Y
= 4=14689—b-33,83 > prognosis for budget = 30:
~ 25,443

§(30) = 25,44340,634-30 ~ 44,463

23



» Variance of data in y; as indicator for model’s information content

> Only a fraction of that variability can be mapped in the modeled values {j;

80 4
70
60

50 o

30 4

20*{

It

20 +

40 |

60

80 4
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Introduction
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Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R2 s not perfect!
Residual analysis

Multicollinearity
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» Variance of data in y; as indicator for model’s information content

> Only a fraction of that variability can be mapped in the modeled values {j;

Introduction

80 4 80 4
o L R and RStudio
0 - 0 7e Simple linear
' ° regression
Lo° K Example set of dat
60 xample ata
Trend as a linear model
-
' Least squares
50 Best solution
Variance and information
40 - 40 - ) Coefficient of determination
o P R? is not perfect!
Residual analysis
304 30 |
Multicollinearity
20 - 20 4 Supplementary slides
T T T T T T
£ 3 ° & < 8 8
£ g
a E
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» Variance of data in y; as indicator for model’s information content

> Only a fraction of that variability can be mapped in the modeled values {j;

80 4 80 4
o .
04 70 e
) L)
' o % s
60 | 60 {9
-
1
50 4
I3
oo
wl| |E wld
. <
304 30«&
20 o 204
L T T T T
£ 3 8 2 3 2
£ g
2 £

> Empirical variance for ,red” and ,green”:

18 18
T Z ~ 200,77 resp. g Z 7)% ~ 102,78
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Example set of data
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Best solution
Variance and information
Coefficient of determination
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> Quality criterion for regression model: Coefficient of determination: lﬂ "
‘=
< (o 2 & a2 o
Z (y1 - g) Z] y-L - Tlg Introduction
2 L= = 2 e ani tudio
R = = =7 =1 €[0;1] R- dRS-d
Z (y1 = ‘g)z Z y% — ngz Simple linear

.
Il
o
Il
=

> Possible interpretation of R%:
Proportion of total information in data which could be
explained using model
» R =0 ,if X, Y uncorrelated
R? =1 ,if §; =yi Vi (every data point on regression line)
> With soccer example:

18
(0 —9)?°
R? = &I ~ 102,78 ~51,19%
13 ( . 200,77 ’
Yi—

regression

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R2 s not perfect!

Residual analysis

Multicollinearity

Supplementary slides
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Regression: Four one-dimensional examples

» Famous data from the 1970ies:

1 X171 X2i X3t X4i  Y1i Y2i Ysi Yai

1 10 10 10 8 804 914 746 658
2 8 8 8 8 695 814 677 576
3 13 13 13 8 758 874 12,74 7,71

4 9 9 9 8 881 877 7,11 884
5 11 11 11 8 8,33 9,26 7,81 8,47
6 14 14 14 8 92,96 8,10 8,84 7,04
7 6 6 6 8 724 613 608 525
8 4 4 4 19 426 310 539 1250
9 12 12 12 8 1084 9,13 815 556
10 7 7 7 8 482 726 642 791

1 5 5 5 8§ 568 474 573 689

(Quelle: anscombe )

Data analysis,
Regression and

Beyond
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5

Example set of data

Trend as a linear model
Least squares

Best solution

Variance and information
Coefficient of determination
R? is not perfect!

Residual analysis

26
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> in following table: results of each regression analysis
> with: xy independent, yyx dependent variable
> Models: yi = ayx + brxk

Qi

by

R

AWK =&

3,0001
3,0010
3,0025
3,0017

0,5001
0,5000
0,4997
0,4999

0,6665
0,6662
0,6663
0,6667

Stefan Etschberger

I

Introduction

R and RStudio

Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
R2 s not perfect!
Residual analysis

Multicollinearity
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Properties of residual distribution -

. Introduction
> Preferably no systematic pattern
> No change of variance dependent of {J; (Homoscedasticity)

> Necessary for inferential analysis: Approximately normal Bampleset of da
. . . Trend as a linear model
distributed residuals (g-g-plots)

Least squares

R and RStudio

Simple linear
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Best solution

Variance and information
Causality vs. correlation

Coefficient of determination
R2 s not perfect!

> Mostly important for useful regression analysis: Sl ralysi

Multicollinearity

» Causal connection between independent and dependent T
variable

» Otherwise: No valuable prognosis possible
> Often: Latent variables in the background
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Back to Mr. Meier’s data

phone gift email mail revenue
1 2936 146.14 1032 1336 3137.85
2 8.75 12582 11.27 1472 3728.11
3 36.15 124.51 845 17.72 3084.75
4 5120 12936 10.27 39.59 4667.90
5 5136 16342 819 7.57 228641
6 3465 11004 7.89 21.68 414761
7 19.65 113.88 10.23 22.17 364822
8 17.51 84.04 6.79 13.82 2558.09
9 1093 123.18 1224 20.81 3003.83
10 135 152.89 1552 2263 4740.21
11 4636 12054 10.81 4175 4014.46
12 31.61 131.27 7.69 6.72 3241.13
13 2348 96.71 793 17.80 2174.79
14 70.09 15244 8.55 29.77 3318.12
15 3270 9412 766 2492 3504.20
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> |dea: Maybe there is a (linear) causal dependency between )
revenue and the distinct advertising actions

» In other words: How much (more) revenue in Euro do we get
from investing one (more) Euro in customer gifts (mails,
emails, phone calls)?

» That means: We have to do a Multivariate Regression model

Back to Mr. Meier
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Vocabulary
Geometry and
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Common believe
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##
##
#Hi#
#H#
##
##
##
#Hi#
HH#
##
#i#
##
#Hi#
#H#
##
##
#i#
Hi#
##
##
##

Im(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)

Call:
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value
(Intercept) 741.5 250.3 2.96
phone -68.2 34.1 -2.00
gift 47.5 22.8 2.08
mail 132.6 46.3 2.86
email -413.9 282.9 -1.46
Signif. codes: 0 *xx 0.001 *x 0.01 * 0.

PrC>|tl)
0.0041 **
0.0494 *
0.0408 *
0.0054 *x
0.1477

05 . 0.1 1

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718
F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16
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Call:
Im(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 741.5 250.3 2.96  0.0041 **
phone -68.2 34.1  -2.00 0.0494 *
gift 47.5 22.8 2.08  0.0408 *
mail 132.6 46.3 2.86  0.0054 **
email -413.9 282.9 -1.46  0.1477
Signif. codes: 0 *xx 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718
F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16

» Adjusted coefficient of determination (R2) 0.7179

Data analysis,
Regression and

Beyond
Stefan Etschberger

Introduction
R and RStudio

Simple linear
regression

Multicollinearity

Back to Mr. Meier

Mr. Maier und his problem
Vocabulary

Geometry and
Multicollinearity

Common believe
Solution approach
Diagnosis and therapy
Roundup

Supplementary slides

37



##
#Hit
#Hi#
#Hi#
##
##
##
#Hi#
HH#
##
#i#
##
#Hi#
#H#
##
#i#
#i#
Hi#
##
##
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Call:
Im(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 741.5 250.3 2.96  0.0041 **
phone -68.2 34.1  -2.00 0.0494 *
gift 47.5 22.8 2.08  0.0408 *
mail 132.6 46.3 2.86  0.0054 **
email -413.9 282.9 -1.46  0.1477
Signif. codes: 0 *xx 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718
F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16

» Adjusted coefficient of determination (R2) 0.7179
> F-statistic: 51.2593, p-value: 9 9628 x 10~ 2!
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##
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#Hi#
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##
#i#
#i#
#Hi#
#H#
##
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it
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##
##
#i#

Im(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)

Call:
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value
(Intercept) 741.5 250.3 2.96
phone -68.2 34.1 -2.00
gift 47.5 22.8 2.08
mail 132.6 46.3 2.86
email -413.9 282.9 -1.46
Signif. codes: 0 *xx 0.001 *x 0.01 * 0.

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718

Pr(>1t])
0.0041 **
0.0494 *
0.0408 *
0.0054 *x
0.1477

05 . 0.1

F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16

» Adjusted coefficient of determination (R2) 0.7179
> F-statistic: 51.2593, p-value: 9 9628 x 10~ 2!

> Herr Maier is a little surprised, e.g. why email advertising seems to be this

harmful.
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##
#Hit
#Hi#
#Hi#
##
##
#Hi#
#Hi#
Hi#
##
#i#
#i#
#Hi#
#H#
##
#i#
it
Hi#
##
##
#i#

Im(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)

Call:
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value
(Intercept) 741.5 250.3 2.96
phone -68.2 34.1 -2.00
gift 47.5 22.8 2.08
mail 132.6 46.3 2.86
email -413.9 282.9 -1.46
Signif. codes: 0 *xx 0.001 *x 0.01 * 0.

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718

Pr(>1t])
0.0041 **
0.0494 *
0.0408 *
0.0054 *x
0.1477

05 . 0.1

F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16

» Adjusted coefficient of determination (R2) 0.7179
> F-statistic: 51.2593, p-value: 9 9628 x 10~2!

> Herr Maier is a little surprised, e.g. why email advertising seems to be this

harmful.
> But we know that numbers don't lie...
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> Calculation of phone spendings was slightly incorrect...

> ..and has been corrected

phone.old  phone.new

1 29.36 29.36

2 8.75 13.75

3 36.15 36.15

4 51.20 56.20
5 51.36 56.36

6 34.65 39.65
7 19.65 24.65

8 17.51 22.51
9 10.93 15.93
10 1.35 6.35
1 46.36 51.36
12 31.61 31.61
13 23.48 2348
14 70.09 75.09
15 32.70 32.70
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» Model from corrected data

Call:
Im(formula = revenue ~ phone + gift + mail + email, dat:
Residuals:

Min 1Q Median 3Q Max
-1187.4 -301.7 -75.9 384.1 1083.8
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 784.2 253.4 3.09 0.0028 **
phone -24.3 17.8  -1.37  0.1757
gift 18.5 12:.2 1.52 0.1334
mail 73.9 25.0 2.96  0.0041 #%
email -49.8 147.6  -0.34 0.7369
Signif. codes: 0 **x 0.001 *x 0.01 * 0.05 . 0.1 1

Residual standard error: 486 on 75 degrees of freedom
Multiple R-squared: 0.725, Adjusted R-squared: 0.71
F-statistic: 49.4 on 4 and 75 DF, p-value: <2e-16

#H

#H#

#i#

» Model of the original data

Call:
Im(formula = revenue ~ phone + gift + mail + email, data
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 741.5 250.3 2.96  0.0041 **
phone -68.2 341 -2.00 0.0494 %
gift 47.5 22.8 2.08 0.0408 *
mail 132.6 46.3 2.86  0.0054 xx
email -413.9 282.9 -1.46  0.1477
Signif. codes: 0 #xx 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718
F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16
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» Model from corrected data

Call:
Im(formula = revenue ~ phone + gift + mail + email, dat:
Residuals:

Min 1Q Median 3Q Max
-1187.4 -301.7 -75.9 384.1 1083.8
Coefficients:

Estimate Std. Error t value Pr
(Intercept) 784.2 253.4 3.09
phone -24.3 17.8  -1.37
gift 18.5 12:.2 1.52
mail 73.9 25.0 2.96
email -49.8 147.6  -0.34
Signif. codes: 0 *#x 0.001 %% 0.01 x 0.05 .

Residual standard error: 486 on 75 degrees of freedom

Multiple R-squared: 0.725, Adjusted R-squa:
F-statistic: 49.4 on 4 and 75 DF, p-value

Glth
0.0028 *x
0.1757
0.1334
0.0041 xx
0.7369

0.1

red: 0.71
1 <2e-16

> Model seems to be very unstable

» Model of the original data

Call:
Im(formula = revenue ~ phone + gift + mail + email, data
Residuals:

Min 1Q Median 3Q Max
-1084.8 -348.9 -46.5 333.1 1010.1
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 741.5 250.3  2.96  0.0041 **
phone -68.2 341 -2.00 0.0494 %
gift 47.5 22.8 2.08 0.0408 *
mail 132.6 46.3 2.86  0.0054 xx
email -413.9 282.9 -1.46  0.1477
Signif. codes: 0 #%x 0.001 ** 0.01 % 0.05 . 0.1

Residual standard error: 480 on 75 degrees of freedom
Multiple R-squared: 0.732, Adjusted R-squared: 0.718

F-statistic: 51.3 on 4 and 75 DF, p-value

» Small changes in data have a dramatic effect to the model’s

parameters

> Causal analysis is neces

sary!

1 <2e-16
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> Linear regression: models the relationship between a dependent variable y,
independent variables x1, ..., xm with the help of parameters 3¢,...,m
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> Linear regression: models the relationship between a dependent variable y,
independent variables x1, ..., xm with the help of parameters 3¢,...,m
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> Linear regression: models the relationship between a dependent variable y,
independent variables x1, ..., xm with the help of parameters 3¢,...,m

> ingeneraky =Bo+PB1-x1 +...+Bm Xxm+u
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> Linear regression: models the relationship between a dependent variable y,
independent variables x1, ..., xm with the help of parameters 3¢,...,m

» ingeneraby=Po+ P71 -x1+...+Pm -Xm+u

Yn 1

X1m Bo

Xnm Bm

=X-B+u

> The error term u is the portion of the data which can not be described by the

model

> Typical: Estimation of the ,best” model parameters Bo,...,Pm using a

least-square analysis:

_ (XTx)—l XTy
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> two-dimensional example
> stable model possible
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» Perfect multicollinearity
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Data analysis,

Idea for diagnosis: Correlation? Regression and

Stefan Esehberger

> Maybe the correlation of the independent variables is a good e
measure? 0

> But: Perfect multicollinearity between three or more vectors b ol

(which are not pairwise correlated) ‘

> Simple Example:

1 1 0 0
1 and 0),11],10
1 0 0 1
Mr. Maier’s data: Correlation matrix from independent iy
variables: Wncolamty
phone gift email mail sy
phone 1.00 019 -052 0.10
gift 019 1.00 057 -0.1
email -0.52  0.57 1.00 0.37
mail 0.10 -0.11 037 1.00

> Correlation is sufficient, but not necessary for multicollinearity
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Back to Mr. Maier’s data

» Comparison of

@ the condition indices (1st column)
@ and the variance proportions of i

O

\

> Result:
cond.index intercept phone gift email mail
1 1.00 0.00 0.00 0.00 0.00 0.00
2 4.05 0.00 0.01 0.00 0.00 0.00
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5 83.93 0.00 098 0.99 0.99 0.96

> Diagnosis: Look at the lines with high condition indices (> 30); if

there are two variance proportions > 0,5...
> ..there is probably a dangerous multicollinearity caused by the
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> Result:
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2 4.05 0.00 0.01 0.00 0.00 0.00
3 5.11 0.01 0.00 0.00 0.00 0.04
4 11.35 0.99 0.01 0.00 0.00 0.00
5 83.93 0.00 098 0.99 0.99 0.96

> Diagnosis: Look at the lines with high condition indices (> 30); if

there are two variance proportions > 0,5...
> ..there is probably a dangerous multicollinearity caused by the

involved variables

> Here: all 4 variables build a dangerous multicolliearity situation which

results in a condition index of 83,93
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Nearly multicollinearity: Nearly linear dependency of the columns of X

v

v

v

= there is a vector v # 0, such that

VIX1 + ...t VimXm =Xv=a =0

(If not all scalars vy ..

Therefore wanted: vector v with definit length (e.g. 1), sucht that |a| becomes

small

.V are 0)

That leads to a minimisation problem:

min |a/? = mina
v v

Lagrange multipliers:

Ta=minv' XTXv with p2Z=viv=1
v

Lw,A) =vI XTXv+A(1 =vTv)
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4 Zuriick

> Nearly multicollinearity: Nearly linear dependency of the columns of X

> = there is a vector v # 0, such that

VIX] oo FVmXm = Xv=a~x0

(If not all scalars vy ...v are 0)

» Therefore wanted: vector v with definit length (e.g. 1), sucht that |a| becomes
small

> That leads to a minimisation problem:

min|aZ =mina’a =minv' X"Xv with p?=vTv=1
v v v

> Lagrange multipliers:

Lw,A) =vI XTXv+A(1 =vTv)

> Derivation results in necessary condition for minimum:

XTXv = Av
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» X"Xv = Av is an eigenvalue problem
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» X"Xv = Av is an eigenvalue problem

» Which Eigenvalue A minimises |a

?
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) Data analysis,
< Zuriick Regression and
d

Beyon
Stefan Etschberger

» X"Xv = Av is an eigenvalue problem
?

» Which Eigenvalue A minimises |a
> Trick: Multiply X" Xv = Av with v’
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» X"Xv = Av is an eigenvalue problem
?

» Which Eigenvalue A minimises |a
> Trick: Multiply X" Xv = Av with v’

SviX'Xv=An'v & |afP=A & la=VA

> Smallest Eigenvalue A; for Eigenvector vi minimises |a| and shows
strongest (nearly-)linear dependency
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v

v

v

XTXv = Av is an eigenvalue problem
?

Which Eigenvalue A minimises |a
Trick: Multiply XTXv = Av with v’

SviXXv=mw'v & jadf=Ar & |d=VA

Smallest Eigenvalue A; for Eigenvector vi minimises |a| and shows
strongest (nearly-)linear dependency

Sort eigenvalues according to size: (A2, ...) and Eigenvectors vy, ...
gives the other values a,,....
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- Data analysis,
< i Regression and
Beyond
Stefan Etschberger

» X"Xv = Av is an eigenvalue problem
» Which Eigenvalue A minimises |a|?
> Trick: Multiply X" Xv = Av with v’

Introduction

=vXxXxv=n"v & |a|2 =N & Jd= VA R and Rstudio

Simple linear
regression

> Smallest Eigenvalue A for Eigenvector vi minimises |a| and shows A
strongest (nearly-)linear dependency o ——r—

> Sort eigenvalues according to size: (A2, ...) and Eigenvectors v,, ...
gives the other values a,,....

> Proportion of largest and smallest eigenvalue:

is called condition number
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< Zuriick

Var (i) = 0® (X'X) . =0® (VATVT) =0? 5 U

With:
A diagonal matrix of eigenvalues A1, . .. and
'V as matrix of eigen vectors vy, . ..

> Meaning: Small eigenvalue und large component in eigenvector (both hints for
multicollinearity) result in large proportion in variance of 3.

> Large variance of 3: Instable model
> Weight of this variance proportion (Summanden in Formel) divided through full
variance: variance decomposition proportion 7t;

—1.2
7\]. Vi

—1_2
z AL Vi
i=0
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