Wirtschaftsmathematik

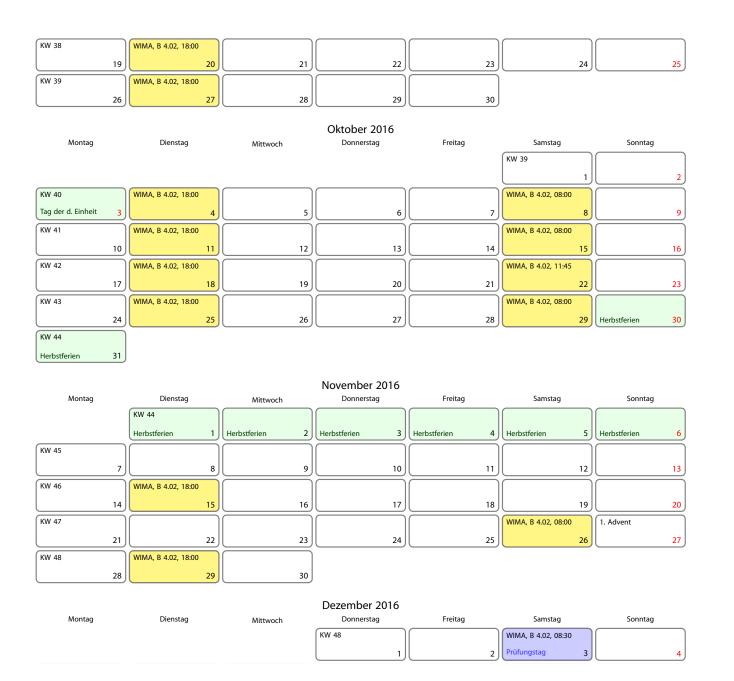
Einführung in einige Teilbereiche der Wirtschaftsmathematik

Wintersemester 2016

HSA Wing Sessionlist WS 2016									
			52						
Datum	N.	Zeit	UE	Themen					
Dienstag, 20. September 2016	1	18.00-21.15	4	Einführung, Zinsen, Renten					
Dienstag, 27. September 2016	2	18.00-21.15	4	Tilgung, Festverz. Wertpapiere					
Dienstag, 4. Oktober 2016	3	18.00-21.15	4	Lineare Optimierung: Einführung, Lösungsmethoden					
Samstag, 8. Oktober 2016	4	08.00-11.45	4	Lineare Optimierung: Standardmaximumproblem, Simplex					
Dienstag, 11. Oktober 2016	5	18.00-21.15	4	Gewöhnliche Differentialgleichungen					
Samstag, 15. Oktober 2016	6	08.00-11.45	4	Analytische Lösung linearer DGLs					
Dienstag, 18. Oktober 2016	7	18.00-21.15	4	Einführung, univ. Statistik, Konzentration					
Samstag, 22. Oktober 2016	8	11.45-15.00	4	Korrelation, Regression, Preisindizes					
Dienstag, 25. Oktober 2016	9	18.00-21.15	4	Kombinatorik, Wahrscheinlichkeiten; Binomial, Hypergeo, Poisson	1				
Samstag, 29. Oktober 2016	10	08.00-11.15	4	Zufallsvariablen, Lage- und Streuung, Stetige ZV, Gleich-vtlg.					
Dienstag, 15. November 2016	11	18.00-21.15	4	Normalvtlg., Schätzen und Eigenschaften von Punktschätzern					
Samstag, 26. November 2016	12	08.00-11.15	4	Konfidenzintervalle, t-Test					
Dienstag, 29. November 2016	13	18.00-21.15	4	Puffer, Wiederholung Besprechung Probeklausur					
Samstag, 3. Dezember 2016		09.30-11.00		Klausur (regulärer Termin 90 Min., mit Aufsicht)					

Stundenplan

Stundenplan (Stand 15.9.2016)



Wirtschaftsmathematik

Etschberger - WS2016

1 Finanzmathematik

Zinsen

Renten

Tilgung

Kursrechnung

2 Lineare Programme

Nebenbedingungen und

Zulässigkeit

Zielfunktion

Graphische Lösung

3 Differentialgleichungen

Einführung Grundlegende Begriffe Qualitative Analyse von Systemen

Beispiele für analytisch lösbare DGL

Lineare Differentialgleichungen

4 Statistik: Einführung

Berühmte Leute zur Statistik

Wie lügt man mit Statistik?

Gute und schlechte Grafiken

Begriff Statistik

Grundbegriffe der Datenerhebung

R und RStudio

5 Deskriptive Statistik

Häufigkeiten

Lage und Streuung

Konzentration

Zwei Merkmale

Korrelation

Preisindizes

Lineare Regression

6 Wahrscheinlichkeitstheorie

Kombinatorik
Zufall und Wahrscheinlichkeit
Zufallsvariablen und Verteilungen
Verteilungsparameter

7 Induktive Statistik

Grundlagen Punkt-Schätzung Intervall-Schätzung Signifikanztests

Printed Sources

- 1. Finanzmathematik
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Vorlesungsbegleitende Unterlagen

- Arbeitsmaterial: Foliensatz, Aufgabenskript, Mitschrift auf Wunsch
- Bücher (unterstützend):

- Bamberg, Günter, Franz Baur und Michael Krapp (2011). **Statistik**. 16. Aufl. München: Oldenbourg Verlag. ISBN: 3486702580.
- Fahrmeir, Ludwig, Rita Künstler, Iris Pigeot und Gerhard Tutz (2009). **Statistik: Der Weg zur Datenanalyse**. 7. Aufl. Berlin, Heidelberg: Springer. ISBN: 3642019382.
- Luderer, Bernd (2003). Starthilfe Finanzmathematik. Zinsen, Kurse, Renditen. 2. Aufl. Stuttgart, Leipzig, Wiesbaden: Teubner.
- Opitz, Otto (2004). **Mathematik für Wirtschaftswissenschaftler**. 9. Aufl. München: Oldenbourg.

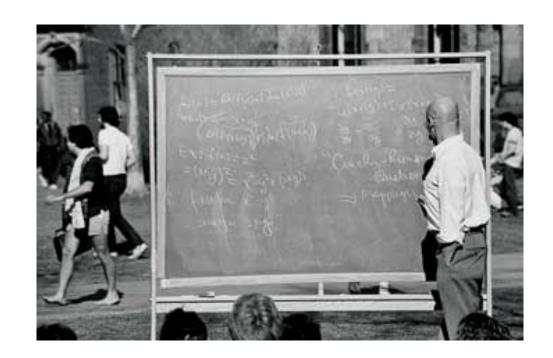
Prüfung

Klausur:

- Klausur am Ende des Semesters
- Bearbeitungszeit:90 Minuten
- Erreichbare Punktzahl: 90
- ► Hilfsmittel:
 - Schreibzeug,
 - Taschenrechner, der nicht 70! berechnen kann,
 - ein Blatt (DIN-A4, vorne und hinten beschrieben) mit handgeschriebenen Notizen (keine Kopien oder Ausdrucke),

Veranstaltungskonzept

- Mitschrift!
- Folien sind nur ergänzendes Material zur Mitschrift
- Aufteilung
 in Vorlesung
 und Rechnen von
 Beispielen und
 Übungsaufgaben



- Viele Aufgaben als Hausaufgabe, Besprechung nur bei Fragen; sonst: selbst Lösungen vergleichen
- Ohne selbständiges Rechnen aller (!) Übungsaufgaben ist Nutzen der Veranstaltung sehr gering
- ► Fragenstellen ist jederzeit erwünscht
- Bei Fragen oder Problemen: E-Mail
- ► Informations-Backbone für Unterlagen und mehr: Moodle

Wirtschaftsmathematik: Table of Contents

- 1 Finanzmathematik
- 2 Lineare Programme
- 3 Differentialgleichungen
- 4 Statistik: Einführung
- 5 Deskriptive Statistik
- 6 Wahrscheinlichkeitstheorie
- 7 Induktive Statistik

1 Finanzmathematik
Zinsen
Renten
Tilgung
Kursrechnung

```
Zinsen = Gebühren für überlanenes Kapital,
abhängig von Daue, Zinssatz,
Betrag
                                                                                                                                                                                                          Exponentielle Verzinsung (Zinsenzinsen)
                                                                                                                                                                                                          Beispiel: Kontostand Ko = - 1000 €
                                                                                                                                                                                                              jahrliche (p.a.) Zinsabrechnung mit i=0.15
                                               Kapital zum Zeitpunkt O
                                             kapital zum Ende de Lantzeit

"Lantzeit

"La
                    Kį :
                                                                                                                                                                                                              mach 1 Jahr: K1 = -1000 + (-1000) . 0.15 = -1000 . 1.15
                                                                                                                                                                                                             had 2 Jahran: Kz = K1 1.15
= -1000 1.15 1.15
= -1000 1.15 2 = -1322.50
                                               Prosentainssale 35 2 3.5
                       q=1+i Zinsfahtor (2.8. 1.035 = 3.5%)
    Einfache (lineare) Verzinsung
                                                                                                                                                                                                              nad 5 Jahren: ks = -1000 -1.15 = -2011.36
                                           k = K (1+ i.n)
                                                                                                                                                                                                          allgemen : Kn = Ko gh Zinseszinsformel
· keine Besücksichtigung von Zinserzinsen
ode Privat Krediku
                                                                                                                                                                                                [ Exkus: Tabeller mit TR:
    Beinpiel: K = 100-E, h = 500, i = 0.05
                                                                                                                                                                                                        Mode - table
                                                                                                                                                                                                                " f(x) = " 1000 · 1.15 " =
                                             K = 400 · (4 + 0.05 · 500) = 2600 €
                                                                                                                                                                                                                  START
                                                                                                                                                                                                                   END
                                                                                                                                                                                                                  SCHRITTY.
                                                                                                                                                                                                                                                                                                                                         12 11 4652.391
                                                                                                                                                                                                                                                                                                                                          13 12 5350,250
                                                                                                                                                                                                                                                                                                                                          17 16 9357,621
                                                                                                                                                                                                                                                                                                                                          18 17 10761.264
                                                                                                                                                                                                                                                                                                                                         19 18 12375.454
                                                                                                                                                                                                                                                                                                                                          20 19 14231.772
```

.

Becapiel:
$$k_0 = 400$$
, $k_0 = 500$, $i = 0.05$
 $k_0 = 100 \cdot 1.05^{500} = 3.93 \cdot 10^{12} \le 10^{$

Etschberger - WS2016

- 1. Finanzmathematik
- 1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

Quellen

- Zinsen: Gebühr, die ein Schuldner für die befristete Überlassung von Kapital bezahlt
- Betrag der Zinsen (Z): Abhängig von Höhe des überlassenen Kapitals K, dem vereinbartem Zinssatz und der Dauer der Überlassung

Verwendete Symbole:

Symbol	Bezeichnung
K ₀	Betrag zu Beginn
K_t	Betrag zum Zeitpunkt t
K_n	Endbetrag (Zeitpunkt n)
n	ganzzahlige Laufzeit
Z_{t}	Zinsen zum Zeitpunkt t
$i = \frac{p}{100}$	(konstanter) Zinssatz
q = 1 + i	Zinsfaktor
p	(Prozentzinssatz)

Einfache Verzinsung

Wirtschaftsmathematik Etschberger - WS2016

Einfache (lineare) Verzinsung gemäß

$$K_n = K_0 + Z$$

$$= K_0 + K_0 \cdot i \cdot n$$

$$= K_0 \cdot (1 + i \cdot n)$$

- Gesetzlich vorgeschrieben für Verzugszinsen und bei Kreditgeschäften zwischen Privatpersonen (BGB, §248)
- K₀ unbekannt: Barwert K₀ über Abzinsung bzw. Diskontierung bzw. Barwertberechnung
- Amtliche Diskontierung:

$$K_0 = \frac{K_n}{1 + ni}$$

► Kaufmännische Diskontierung (Nur erste Näherung):

$$K_0 = K_n(1-ni)$$

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

- 1. Finanzmathematik
- 1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Ouellen

- Sparbuchmethode: Einteilung des Zinsjahres in 12 Monate zu je 30 Tagen,
- Maximal: 360 Zinstage pro Jahr
- Dadurch Berechnung von Monats- bzw. Tageszinsen möglich
- ▶ Dazu: Berechnung des Bruchteils eines Zinsjahres über die Anzahl der Zinstage $t \in \{0, 1, ..., 360\}$
- Regeln: Einzahlungstag wird komplett verzinst, Auszahlungstag gar nicht
- Daraus ergibt sich

$$K_n = K_0 + K_0 \cdot i \cdot \frac{t}{360} = K_0 \left(1 + i \cdot \frac{t}{360} \right)$$

```
Beispiel: Einzahlung, 1 Mrd. €

am 28.2.2017 um 23.59 Uhr

Abheben am 1.3.2017 um 0.01 Uhr

(i = 0.01)

3 Zinslage: 2 = 1 Mrd. · 0.01 · \frac{3}{160}

= 83 333,33 €
```

- Während Laufzeit Zinszahlungen mit sofortiger Wiederanlage und Verzinsung zum Zinssatz i
- Entwicklung des Kapitals:

$$K_1 = K_0 + K_0 \cdot i = K_0 \cdot (1 + i) = K_0 \cdot q$$
 $K_2 = K_1 \cdot (1 + i) = (K_0 \cdot q) \cdot q = K_0 \cdot q^2$
 $K_3 = K_2 \cdot (1 + i) = (K_0 \cdot q^2) \cdot q = K_0 \cdot q^3$
...

Damit: Zinseszinsformel, mit π (zunächst) ganzzahlig.

$$K_n = K_0 \cdot \mathfrak{q}^n$$

qⁿ heißt Aufzinsungfaktor

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Wirtschaftsmathematik

Etschberger - WS2016

Auflösung der Zinseszinsformel nach K_0 , q und n:

$$K_0 = K_n q^{-n}$$

- Abzinsungs- oder Diskontierungsformel

$$q = \sqrt[n]{\frac{K_n}{K_0}} \quad \text{bzw.} \quad i = \sqrt[n]{\frac{K_n}{K_0}} - 1$$

$$n = \frac{\ln K_n - \ln K_0}{\ln q}$$

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

- 1. Finanzmathematik
- 1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Quellen

▶ Üblich: Einfache Verzinsung bei Restlaufzeiten kleiner einem ganzzahliges Vielfachen der Zinsperiode

- ► Genauer: Mit
 - Δt_1 (Anzahl Zinstage im ersten Jahr),
 - n (die weiteren, ganzen Zinsperioden) und
 - Δt_2 (Zinstage im letzten Jahr),

gilt für das Endkapital K_x :

$$K_x = K_0 \cdot \left(1 + i \cdot \frac{\Delta t_1}{360}\right) \cdot (1 + i)^n \cdot \left(1 + i \cdot \frac{\Delta t_2}{360}\right)$$

Gemischte Zinsrechnung unter Verwendung der Sparbuchmethode zur Bestimmung der Anzahl der Zinstage

```
Gemisolte Verzinsung
Brispiel: Einzahlung 20.9.16: 1000 €

auf Kordo mit i = 0.02

20.9.16 apr 2 instage

1.1.

20.96 20.77 2 volle Jahre

2020
                 Abheben inkl. Zinsen am 5.7.19
       Kontostand om 1.1.2017: 1000. (1+0.03.101)
       konb stand om 1.1.2019: ... 1.03
       H QIN 5.7.2019 (1+0.03 - 184)
                                        = 1086.22 €
   allgemein:
      Kn = Ko (1+1 360) . 9 . (1+1. 262)
           at: Zinstage im Einzahlungs jahr
n: ganze Jahre dazvischen
Atz: Zinstage im Auszahlungsjahr
Unbejahrige Verzinsung
Boispiel: Girokonto, 17% p.a.

quartals weire Abream ung
   Koulostand am 1.1.2016: -1000 €

• am 14.16: -1000 (14.0.13)

• am 1.7.16: -1000 (14.0.13)

• 17.16: -1000 (14.0.13)
```

am 1.1.17: - 1000 - (1+ 0.17) =-1181,15 €

```
allzemin: q_{eff} = (1 + \frac{i}{m})^m
       m: Anzahl der Zinsabrechnungen pro Jahr
        m qeff.m.
        1 1.17000
0
        2 1.177225
        4 1.181148
     12 1.183892
     52 1.184976
     365 1.185258
      8760 1.185303
8 31536000 1.1853048486890851
                        00 e0.17 & 1.185304851
     (1+ in) m - e' sklige Vazinsung
                         qeff = ei
```

Beispiel

Am 15.9.2016 wurden € 12 000 zu 3,75 % angelegt. Wie hoch ist der Endbetrag bei Kontoauflösung am 21.9.2023 (letzter Zinstag 20.9.2023)?

Lösung:

15.9.
$$\Rightarrow$$
 $(9-1) \cdot 30 + 15 = 255$
 $\Rightarrow \Delta t_1 = 360 - (255 - 1) = 106$

20.9.
$$\triangleq (9-1) \cdot 30 + 20 = 260$$

 $\Rightarrow \Delta t_2 = 260$

$$(n = 6)$$
:

$$K_{x} = 12\ 000 \cdot \left(1 + \frac{0,0375 \cdot 106}{360}\right) \cdot 1,0375^{6} \cdot \left(1 + \frac{0,0375 \cdot 260}{360}\right)$$
$$= 15\ 541,20$$

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

► Würde man – von t₀ ausgehend – in ganze Jahre und einem Rest aufteilen, so ergäbe sich:

$$K_x = 12\ 000 \cdot 1,0375^7 \cdot \left(1 + \frac{0,0375 \cdot 6}{360}\right) = 15\ 537,08$$

(7 Jahre von 15.9.16 bis 14.9.23; dazu 6 Tage)

Würde man die Zinseszinsformel mit nicht-ganzzahligem Exponenten verwenden, so ergäbe sich Folgendes:

$$K_x = 12\ 000 \cdot 1,0375^{7 + \frac{6}{360}} = 15\ 536,90$$

 Gemischte Verzinsung ist also (zumindest für Kapitalanleger) verbraucherfreundlich

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Nachteil der gemischten Verzinsung

- ▶ Die gemischte Verzinsung ist inkonsistent und vom Zeitpunkt des Zinszuschlages (bzw. der Einzahlung) abhängig.
- ► Im Beispiel: Wäre der Zeitraum um einen Monat verschoben (vom 15.10.16 bis zur Auflösung am 21.10.23), so ergäbe sich ...

$$K_{x} = 12\ 000 \cdot \left(1 + \frac{0,0375 \cdot 76}{360}\right) \cdot 1,0375^{6} \cdot \left(1 + \frac{0,0375 \cdot 290}{360}\right)$$
$$= 15\ 540,31$$

Die Widersprüche verschwinden, wenn eine unterjährige Verzinsung zum konformen Zinssatz vorgenommen wird.

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

- 1. Finanzmathematik
- 1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Quellen

- Abrechnung und Zahlung von Zinsen nicht jährlich, sondern in kürzeren Abständen
- ► Dazu: m gleich lange Zinsperioden pro Jahr
- ► Typische Aufteilungen: m = 2, 4, 12 Zinsperioden
- ► Annahme: Laufzeit n in Jahren sei (aus Vereinfachungsgründen) ein ganzzahliges Vielfaches von $\frac{1}{m}$ (z.B. m=2, n=1,5 oder m=12, n=1,25).

Bei m Zinsabschnitten pro Jahr heißt gegeben, so heißt:

- ightharpoonup der Zins i oder i_{nom} der nominelle Jahreszins oder Jahreszins,
- ightharpoonup $i_{rel} = \frac{i}{m}$ der relative Periodenzins,
- ▶ i_{kon} der zu i konforme Periodenzins, mit dem die periodische Verzinsung über i_{rel} zum selben Ergebnis führt wie die jährliche Verzinsung mit i.

$$(1+i_{\mathsf{kon}})^{\mathsf{m}}=(1+i)$$

Betrachte den relativen Periodenzinsen $i_{rel} = \frac{i}{m}$, so heißt:

- ▶ i der nominelle Jahreszins
- ▶ i_{eff} der effektive Jahreszins, wenn jährliche Verzinsung mit i_{eff} zum selben Ergebnis führt wie periodische Verzinsung mit i_{rel} . (Entsprechendes gilt für q_{rel} , q_{kon} , q_{eff}).

$$\begin{split} K_1 &= K_0 \cdot q_{rel}^m = K_0 \cdot q_{eff} \\ \Rightarrow q_{eff} &= q_{rel}^m \end{split}$$

$$mit \ q_{rel} = 1 + i_{rel} = 1 + \frac{i}{m}$$

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

▶ Damit: Effektivzins q_{eff} ist

$$q_{eff} = (1 + i_{rel})^{m} = \left(1 + \frac{i}{m}\right)^{m}$$

► Endkapital K_n ist:

$$K_n = K_0 \cdot (1 + i_{rel})^{m \cdot n} = K_0 \cdot \left(1 + \frac{i}{m}\right)^{m \cdot n}$$

► Anmerkung: m · n muss nach o.g. Bedingungen ganzzahlig sein.

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Ein Betrag von 10 000 € soll zu 5 % nominal bei monatlicher Verzinsung angelegt werden. Welcher Betrag kann nach 16 Monaten entnommen werden? Wie hoch ist der Effektivzins?

Lösung:

Mit i = 5 %, m = 12 und $m \cdot n = 16$ gilt:

$$K_n = K_0 \cdot \left(1 + \frac{i}{m}\right)^{m \cdot n} = 10\ 000 \cdot \left(1 + \frac{0,05}{12}\right)^{16} = 10\ 687,91 \in$$

Effektiver Jahreszins:

$$i_{\text{eff}} = \left(1 + \frac{0.05}{12}\right)^{12} - 1 = 5.12\%$$

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

Beispiel zur unterjährigen Verzinsung mit dem konformen Zinssatz

Wirtschaftsmathematik Etschberger - WS2016

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

Ouellen

► Widersprüche der gemischten Verzinsung verschwinden, wenn eine unterjährige Verzinsung mit dem konformen Zinssatz gemäß den Richtlinien für den internationalen Wertpapierhandel (ISMA – International Securities Market Association) vorgenommen wird.

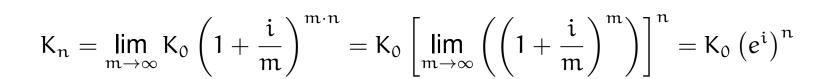
Beispiel

Am 15.9.2016 (15.10.2016) wurden 12 000 € zu **effektiv** 3,75 % angelegt. Wie hoch ist der Endbetrag bei Kontoauflösung am 21.9.2023 (21.10.2023)?

Lösung

- Verwendung des konformen Zinses auf täglicher Basis,
- ► also $q_{kon} = \sqrt[360]{1,0375} = 1,0375 \frac{1}{360}$
- $K_n = 12\ 000 \cdot 1,0375^{\frac{106}{360}} \cdot 1,0375^{6} \cdot 1,0375^{\frac{260}{360}} = 15\ 536,90$
- ► alternativ: $K_n = 12\ 000 \cdot 1,0375^{\frac{76}{360}} \cdot 1,0375^{6} \cdot 1,0375^{\frac{290}{360}} = 15\ 536,90$

lacktriangle Lässt man $\mathfrak{m} o \infty$ wachsen, so erhält man aus der obigen Formel



die Formel für die stetige Verzinsung:

$$K_n = K_0 \cdot e^{i \cdot n}$$

Für den effektiven Jahreszinssatz gilt damit:

$$i_{eff} = e^i - 1$$

- Anwendung stetiger Wachstumsprozesse:
 - Ökonomie (Bevölkerungswachstum),
 - Physik (radioaktiver Zerfall),
 - BWL (Portfolio- und Kapitalmarkttheorie)

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

- 1.2. Renten
- 1.3. Tilgung
- 1.4. Kursrechnung
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Beispiel zur stetigen Verzinsung

Wirtschaftsmathematik Etschberger - WS2016

Beispiel (überzogenes Girokonto)

 $K_0 = 10\ 000 \in$, n = 5, nominaler Jahreszins i = 0,19. Wie hoch ist K_n und p_{eff} bei stetiger Verzinsung?

Lösung:

$$K_n = K_0 \cdot e^{i \cdot n} = 10\ 000 \cdot e^{0,19.5} = 25\ 857,10 \in i_{eff} = e^{0,19} - 1 = 20,925\%$$

Anmerkungen

Bei Variation von m ergeben sich:

m	1	2	4	12	∞
\mathfrak{p}_{eff}	5	19,903	20,397	20,745	20,925

Die stetige Verzinsung wird z.B. in der Portfoliotheorie verwendet, da sie mathematisch einfacher zu handhaben ist als die diskrete Verzinsung.

1. Finanzmathematik

1.1. Zinsen

Einfache Verzinsung

Zinseszinsen

Gemischte Verzinsung

Nominal- und Effektivzins

Stetige Verzinsung

Zeitwert

1.2. Renten

1.3. Tilgung

1.4. Kursrechnung

2. Lineare Programme

3. DGLs

4. Einführung

5. Deskriptive Statistik

6. W-Theorie

7. Induktive Statistik

- 1. Finanzmathematik
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Quellen

Bücher

Bamberg, Günter, Franz Baur und Michael Krapp (2011). **Statistik**. 16. Aufl. München: Oldenbourg Verlag. ISBN: 3486702580.

Fahrmeir, Ludwig, Rita Künstler, Iris Pigeot und Gerhard Tutz (2009). **Statistik: Der Weg zur Datenanalyse**. 7. Aufl. Berlin, Heidelberg: Springer. ISBN: 3642019382.

Luderer, Bernd (2003). **Starthilfe Finanzmathematik. Zinsen, Kurse, Renditen**. 2. Aufl. Stuttgart, Leipzig, Wiesbaden: Teubner.

Opitz, Otto (2004). **Mathematik für Wirtschaftswissenschaftler**. 9. Aufl. München: Oldenbourg.

- 1. Finanzmathematik
- 2. Lineare Programme
- 3. DGLs
- 4. Einführung
- 5. Deskriptive Statistik
- 6. W-Theorie
- 7. Induktive Statistik

Quellen

Quellen zu Bildern und Daten

Anscombe, Francis (1973). "Graphs in Statistical Analysis". In: **The American Statistician**, S. 195–199.

Bach, Axel, Reinhard Brüning, Katrin Krieft, Hilmar Liebsch und Martin Rosenberg (2006). **Mit Zahlen lügen**. URL: http://www.wdr.de/tv/quarks/sendungsbeitraege/2006/1017/000_zahlen.jsp.

Fahrmeir, Ludwig, Rita Künstler, Iris Pigeot und Gerhard Tutz (2009). **Statistik: Der Weg zur Datenanalyse**. 7. Aufl. Berlin, Heidelberg: Springer. ISBN: 3642019382.

Kramer, Walter (2011). **So lügt man mit Statistik**. Piper Verlag. ISBN: 3492264131.