5 Simulink: Basics

5.1 Generating a Simulink model

- a) Generate a new Simulink model simulink_basics_ex1.mdl. Use the default values and parameters of Simulink.
- b) Program the logical function NOT(NOT(A) OR NOT(B)) using appropriate Simulink blocks.
- c) Input signals A and B are two column vectors $[0\ 0\ 1\ 1]^T$ and $[0\ 1\ 0\ 1]^T$, respectively. Generate two appropriate input blocks for these constant column vectors of type logical (no definition of A and B in the MATLAB workspace).
- d) Generate a output block as display showing the result of the generated logical function for each row of the column vector.

5.2 Subsystems and random signal as input signal

5.2.1 Logical function as subsystem

- a) Save Simulink model simulink_basics_ex1.mdl as new Simulink model simulink_basics_ex2.mdl.
- b) The above logical function NOT(NOT(A) OR NOT(B)) should be grouped to a Subsystem.

Generate a subsystem with two inputs A and B and output y. The subsystem should be named Logische function 1 and the block should display $NOT(NOT(A) \ OR \ NOT(B))$.

5.2.2 Random signal as input signal

In contrast to exercise 5.1 input signals A and B for subsystem Logical function 1 should be randomized time signals.

- a) Delete the input blocks for the constant column vectors from exercise 5.1.
- b) Generate two differen randomized input signals from appropriate Simulink blocks. Such blocks output values between 0 and 1, so their output signals have to be adopted:
- c) Programm the following equation using appropriate Simulink blocks

$$y = 0.5 \cdot (\operatorname{signum}(x) + 1) \qquad \qquad \text{with} \quad \operatorname{signum}(x) = \left\{ \begin{array}{ccc} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{array} \right. \tag{1}$$

x is the output of the random blocks and y the input of the subsystem Logical function 1.

d) Replace the former display output blocks by an appropriate sink block showing time signals with three axis for input signals A and B and output signal y of subsystems Logical function 1. The x-axis should be as long as the complete simulation time.

5.3 Subsystem Scaling

- a) Save Simulink model simulink_basics_ex2.mdl as new Simulink model simulink_basics_ex3.mdl.
- b) Programm equation (1) from exercise 5.2.2 as separate subsystem *scaling*. Input signal is the output of the respective random block, the output signal serves as input A and B, respectively, for subsystem Logical function 1.
- c) Instead of the two subsystems *scaling* for each input of the subsystems *Logical Function 1*) just use a single subsystem *scaling*, but still two randomized signals from two different parameterised random blocks as input signals for the subsystem *scaling*.

5.4 Subsystem and random signal as input signal

Input signals A and B for the subsystem Logical Function 1 are values of variables siminA and siminB in the MATLAB workspace in the Simulink model simulink_basics_ex4.mdl eingelesen werden.

5.4.1 MATLAB initialization file simulink_basics_ex4_ini.m

- a) Generate MATLAB file simulink_basics_ex4_ini.m and set the simulation stop variable Tstop to 10 seconds and sample time Tsample to 0.1 seconds.
- b) Define a column vector T from 0 to Tstop and step size Tsample in MATLAB file simulink_basics_ex4_ini.m.
- c) Generate MATLAB variables siminA and siminB in MATLAB file simulink_basics_ex4_ini.m. Both MATLAB variables are matices with column vector T as first column and the values of the function $\operatorname{mod}(T,2)>1$ and $\operatorname{mod}(T,2)>1.5$, respectively, as second column.
- d) Show the values of the second column of siminA and siminB, respectively, in two subplots one above the other of a MATLAB-Figure.

5.4.2 Simulink model simulink_basics_ex4.mdl

- a) Save Simulink model simulink_basics_ex2.mdl as new Simulink model simulink_basics_ex4.mdl.
- b) Delete the random blocks and the blocks for the equation (1) from exercise 5.2.2.
- c) Choose appropriate Simulink blocks for reading MATLAB variables siminA and siminB, respectively as A and B, respectively for the subsystem Logical Function 1 and insert the respective MATLAB variables siminA and siminB.
- d) Assign MATLAB variable Tstop as configuration parameter for the stop time of Simulink model simulink_basics_ex4.mdl.
- e) Choose an appropriate fixed step solver for the simulation and assign MATLAB variable Tsample to the sample time of the chosen solver.

f) Run the Simulink model simulink_basics_ex4.mdl and monitor the respective values shown in the Display-Block.

Don't forget the initialization of the configuration parameters and the input values siminA and siminB before starting the simulation. What happens if these values are not initialized before?

5.5 Simulation from MATLAB workspace

Simulink model simulink_basics_ex5.mdl should be configured and automatically started from MATLAB workspace.

5.5.1 Simulink model simulink_basics_ex5.mdl

- a) Save Simulink model simulink_basics_ex4.mdl as new Simulink model simulink_basics_ex5.mdl.
- b) Set stopp time configuration parameter of the Simulink model simulink_basics_ex5.mdl to 10 seconds.
- c) Set the solver of the Simulink model to a variable step solver and the maximum sampling time of the solver to 0.2 seconds.
- d) The simulation date shown in the scope block should additionally be save to MATLAB workspace in a "Structure with time" variable ScopeData.
- e) Save the Simulink model again.

5.5.2 MATLAB initialization file simulink_basics_ex5_ini.m

- a) Copy MATLAB file simulink_basics_ex4_ini.m to simulink_basics_ex5_ini.m.
- b) In MATLAB file simulink_basics_ex5_ini.m set the simulation stop variable Tstop to 8 seconds and sample time Tsample to 0.01 seconds.
- c) Keep the definitions of T, siminA and siminB.
- d) Save the file again.

5.5.3 Simulation of Simulink model using MATLAB simulation file

simulink_basics_ex5_sim.m

- a) Generate a MATLAB file simulink_basics_ex5_sim.m.
- b) Call the initialization file simulink_basics_ex5_ini.m from the MATLAB file simulink_basics_ex5_sim.m.
- c) In the MATLAB file simulink_basics_ex5_sim.m assign the current configuration parameters of Simulink model simulink_basics_ex5.mdl to MATLAB variable oldoptions.

- d) In the MATLAB file simulink_basics_ex5_sim.m assign the configuration parameters saved in MATLAB variable oldoptions to MATLAB variable newoptions <u>and</u> the Fixed-Step-Solver 'ode3' to Parameter 'Solver' and MATLAB variable Tsample to Parameter 'FixedStep'.
- e) Start the simulation of Simulink model simulink_basics_ex5.mdl from the MATLAB file simulink_basics_ex5_sim.m with stop time Tstop and configurations parameters saved in newoptions.
- f) After the simulation the values saved to variable ScopeData should be displayed in three subplots one above the other of a MATLAB-Figure.
 - Generate a MATLAB file simulink_basics_ex5_plot.m and programm the plot commands in this file. This file should be automatically started from MATLAB file simulink_basics_ex5_sim.m after the end of the simulation of Simulink model simulink_basics_ex5.mdl.

5.6 Simulation from MATLAB workspace

Simulink model simulink_basics_ex6.mdl should automatically load its configuration parameters in starting and automatically plot the result of the simulation in a MATLAB figure after the end of the simulation.

5.6.1 Simulink model simulink_basics_ex6.mdl

- a) Save Simulink model simulink_basics_ex5.mdl as new Simulink model simulink_basics_ex6.mdl.
- b) Assign MATLAB variable Tstop as configuration parameter for the stop time of Simulink model simulink_basics_ex6.mdl.
- c) Choose an appropriate fixed step solver for the simulation and assign MATLAB variable Tsample to the sample time of the chosen solver.
- d) The simulation date shown in the scope block should additionally be save to MATLAB workspace in a "Structure with time" variable ScopeData.
- e) Assign initialization file simulink_basics_ex5_ini.m and plot file simulink_basics_ex5_ini.m to the respective Callback parameters in model properties pane of Simulink model simulink_basics_ex6.mdl.