Code für den Zähler
- counter.vhd
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- First sequential circuit counts modulo 256 -- The circuit has two inputs, clk_i and reset_ni -- and one output count_o. -- The function of the circuit is a counter which will increment by one -- with each rising clock edge of clk_i -- The counter uses flipflops with asynchronous reset for initializing -- the flipflips and hence the counterstate to 0. Setting reset_ni to "0" will -- reset the flipflops. -- The signal count_reg represents the Q outputs of the flipflops, while -- the signal new_count is connected the D inputs of the flipflops. -- The flipflops result from the description in the count_p process. -- The combinational logic which computes the new state of the flipflops -- based on the current state is in new_count_p -- The count_p process template is the way to infer flipflops. entity counter is port ( clk_i: in std_ulogic; reset_ni: in std_ulogic; count_o: out unsigned(7 downto 0) ); end; architecture rtl of counter is signal count_reg, new_count : unsigned(7 downto 0); begin -- Combinational process which computes the new state -- of the registers from the current state. This process will not -- infer registers but combinational logic new_count_p : process(count_reg) begin -- !!!!! MODIFY THIS TO HAVE A COUNTER !!!! new_count <= not count_reg; end process new_count_p; -- The sequential process for flipflop instantiation -- All signal assignments in this process will result in flipflops. count_p : process (clk_i, reset_ni) begin if reset_ni = '0' then -- This is the asynchronous reset of the flipflops -- with negative logic, i.e. when the reset_ni is "0", then -- the flipflops are asynchronously reset. count_reg <= "00000000"; elsif rising_edge(clk_i) then -- Here the new state is assigned to the registers. count_reg <= new_count; end if; end process count_p; count_o <= count_reg; end; -- architecture
- top.vhd
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity top is port ( SW: in std_ulogic_vector(9 downto 0); -- Switches KEY: in std_ulogic_vector(3 downto 0); -- Keys LEDR: out std_ulogic_vector(9 downto 0); -- Red LEDs above switches HEX0: out std_ulogic_vector(6 downto 0); -- 7 Segment Display HEX1: out std_ulogic_vector(6 downto 0); -- 7 Segment Display HEX2: out std_ulogic_vector(6 downto 0) -- 7 Segment Display ); end; architecture struct of top is component bin2seg is port ( number_i: in unsigned(3 downto 0); seg_o: out std_ulogic_vector(6 downto 0) ); end component; component counter is port ( clk_i: in std_ulogic; reset_ni: in std_ulogic; count_o: out unsigned(7 downto 0) ); end component; signal count : unsigned(7 downto 0); begin bin2seg_i0 : bin2seg port map ( number_i => count(3 downto 0), seg_o => HEX0); bin2seg_i1 : bin2seg port map ( number_i => count(7 downto 4), seg_o => HEX1); counter_i0 : counter port map ( clk_i => KEY(0), reset_ni => KEY(1), count_o => count); LEDR(7 downto 0) <= std_ulogic_vector(count); LEDR(9 downto 8) <= "00"; HEX2 <= "1111111"; end; -- architecture
- top_tb.vhd
library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity top_tb is end; architecture beh of top_tb is component top port ( SW: in std_ulogic_vector(9 downto 0); -- Switches KEY: in std_ulogic_vector(3 downto 0); LEDR: out std_ulogic_vector(9 downto 0); -- Red LEDs above switches HEX0: out std_ulogic_vector(6 downto 0); -- 7 Segment Display HEX1: out std_ulogic_vector(6 downto 0); -- 7 Segment Display HEX2: out std_ulogic_vector(6 downto 0) -- 7 Segment Display ); end component; signal clk, reset_n : std_ulogic; signal switch : std_ulogic_vector(9 downto 0); signal key : std_ulogic_vector(3 downto 0); signal ledr : std_ulogic_vector(9 downto 0); signal hex0, hex1, hex2 : std_ulogic_vector(6 downto 0); begin top_i0 : top port map ( SW => switch, KEY => key, LEDR => ledr, HEX0 => hex0, HEX1 => hex1, HEX2 => hex2); key(0) <= clk; key(1) <= reset_n; key(3 downto 2) <= "00"; clk_p : process begin clk <= '0'; wait for 1 us; clk <= '1'; wait for 1 us; end process clk_p; reset_p : process begin reset_n <= '0'; wait for 15500 ns; reset_n <= '1'; wait; end process reset_p; switch <= "0000000000"; end; -- architecture